Advertisement

Decentralised Internet of Things

  • Mohammad Ayoub Khan
  • Fahad Algarni
  • Mohammad Tabrez QuasimEmail author
Chapter
  • 18 Downloads
Part of the Studies in Big Data book series (SBD, volume 71)

Abstract

The growing number of IoT devices brings challenges to the existing centralised computing system. The existing security protocols are unable to protect the security and privacy of the user data. The current IoT system rely on centralised model. The decentralised IoT system would not only reduce the infrastructure cost but provide standardised peer-to-peer communication model for the massive transactions. However, peer-to-peer communication model has a big challenge of security. The blockchain technology ensures transparent interactions between different parties in a more secure and trusted way using distributed ledger and proof-of-work (POW) consensus algorithm. Blockchain enables trustless, peer-to-peer communication and has already proven its worth in the world of financial services. The idea of blockchain can be implanted to IoT system to deal with the issue of scale, trustworthy and decentralisation, thereby allowing billions of devices to share the same network without the need for additional resources. However, the limited processing power, storage size and energy consumption of IoT device is a major point of concern for blockchain cryptographic functions. Moreover, efficiency, reliability, interoperability among blockchain still need to be addressed. This chapter presents basic concepts of blockchain and investigation about the feasibility of the blockchain in Internet of Things settings.

Keywords

Blockchain Internet of Things PoW NONCE IOTA ADEPT Decentralised LPWAN 

References

  1. 1.
    Zheng, Z., Xie, S., Dai, H.-N., Chen, X., Wang, H.: Blockchain challenges and opportunities: a survey. Int. J. Web Grid Serv. 14, 352 (2018).  https://doi.org/10.1504/ijwgs.2018.095647CrossRefGoogle Scholar
  2. 2.
    O’Connor, C.: What Blockchain means for you, and the Internet of Things (2017). https://www.ibm.com/blogs/internet-of-things/watson-iot-blockchain/. Accessed 20 Sept 2019
  3. 3.
    Blockchain (2017). https://blockchain.info. Accessed 15 Sept 2019
  4. 4.
    Panikkar, B., Nair, S., Brody, P., Pureswaran, V.: ADEPT: an IoT practitioner perspective. IBM (2014)Google Scholar
  5. 5.
    Dorri, A., Kanhere, S.S., Jurdak R.: Towards an optimized blockchain for IoT. In: Proceedings 2nd International Conference on Internet-of-Things Design and Implementation, pp. 173–178. ACM (2017)Google Scholar
  6. 6.
    Höller, J.: Having a headache using legacy IoT devices? https://www.ericsson.com/en/blog/2012/11/having-a-headache-using-legacy-iot-devices. Accessed 30 Sept 2019
  7. 7.
    Ericsson, Cellular networks for massive IoT. https://www.ericsson.com/res/docs/whitepapers/wpiot.pd. Accessed 1 Sept 2019
  8. 8.
    Vangelista, L., Zanella, A., Zorzi, M.: Long-range IoT technologies: the dawn of LoRa. In: Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 51–58. Springer (2015)Google Scholar
  9. 9.
    Bardyn, J., Melly, T., Seller, O., Sornin, N.: IoT: The era of LPWAN is starting now. In: Proceedings of the 42nd European Solid-State Circuits Conference, ESSCIRC Conference, pp. 25–30. Lausanne, Switzerland, IEEE (2016)Google Scholar
  10. 10.
    Nokia, LTE evolution for IoT connectivity (2015). http://resources.alcatel-lucent.com/asset/200178. Accessed 21 Sep 2019
  11. 11.
    Katagi, M., Moriai, S.: Lightweight Cryptography for the Internet of Things (2012)Google Scholar
  12. 12.
    Fabian, B., Günther, O.: Security challenges of the EPC global network. Commun. ACM. 52(7), 121–125 (2009)CrossRefGoogle Scholar
  13. 13.
    Rose, K., Eldridge, S., Chapin, L.: The internet of things: an overview. In: The Internet Society, pp. 1–50 (2015)Google Scholar
  14. 14.
    Weber, R.H.: Internet of Things—new security and privacy challenges. Comput. Law Secur. Rev. 26(1), 23–30 (2010).  https://doi.org/10.1016/j.clsr.2009.11.008MathSciNetCrossRefGoogle Scholar
  15. 15.
    Liu, Y., Dong, B., Guo, B., Yang, J., Peng, W.: Combination of cloud computing and Internet of Things (IOT) in medical monitoring systems. Int. J. Hybrid Inform. Technol. 8(12), 367–376 (2015)CrossRefGoogle Scholar
  16. 16.
    Atlam, H.F., Alenezi, A., Alharthi, A., Walters, R.J., Wills, G.B.: Integration of cloud computing with Internet of Things: challenges and open issues. In: Proceedings IEEE International Conference Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical Social Comput. (CPSCom) and IEEE Smart Data (SmartData), pp. 670–675 (2017). http://dx.doi.org/10.1109/iThings-GreenComCPSCom-SmartData.2017.105
  17. 17.
    Lyu, X., Ni, W., Tian, H., Liu, R.P., Wang, X., Giannakis, G.B., Paulraj, A.: Optimal schedule of mobile edge computing for internet of things using partial information. IEEE J. Sel. Areas Commun. 35(11), 2606–2615 (2017)CrossRefGoogle Scholar
  18. 18.
    Booth, G., Soknacki, A., Somayaji, A.: Cloud security: attacks and current defenses. In: Proceedings 8th Annual Symposium on Information Assurance, ASIA13, pp. 4–5. Citeseer (2013)Google Scholar
  19. 19.
    Chidambaram, N., Raj, P., Thenmozhi, K., Amirtharajan, R.: Enhancing the security of customer data in cloud environments using a novel digital fingerprinting technique. Int. J. Digit. Multimed. Broadcast. 2016, 1 (2016)CrossRefGoogle Scholar
  20. 20.
    Kshetri, N.: Can blockchain strengthen the Internet of Things? IT Prof. 19(4), 68–72 (2017)CrossRefGoogle Scholar
  21. 21.
    Brody, P., Pureswaran, V.: Device democracy: saving the future of the internet of things. IBM (2014). https://public.dhe.ibm.com/common/ssi/ecm/gb/en/gbe03620usen/global-business-services-global-business-services-gb-executivebrief-gbe03620usen-20171002.pdf. Accessed 2 Sept 2019
  22. 22.
    IBM: Watson Internet of Things (2017). https://www.ibm.com/internet-ofthings/. Accessed 2 Sept 2019
  23. 23.
    Rahulamathavan, Y., Phan, R.C.W., Misra, S., Rajarajan, M.: Privacy-preserving blockchain based IoT ecosystem using attribute-based encryption. In: Proceedings IEEE International Conference on Advanced Network Telecommunication System. Odisha, India (2017)Google Scholar
  24. 24.
    Ethereum mining hardware (2017). https://www.buybitcoinworldwide.com/ethereum/mining-hardware/. Accessed 5 Sept 2019
  25. 25.
    Raspberry pi. https://www.raspberrypi.org. Accessed 2 Sept 2019
  26. 26.
    Lee, J.S., Su, Y.W., Shen, C.C.: A comparative study of wireless protocols: Bluetooth, UWB, ZigBee, and Wi-Fi. In: Proceedings of the 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON ’07), pp. 46–51 (2007)Google Scholar
  27. 27.
    Lauridsen, M., Kovacs, I.Z., Mogensen, P., Sorensen, M., Holst, S.: Coverage and capacity analysis of LTE-M and NB-IoT in a rural area. In: Proceedings 84th IEEE Vehicular Technology Conference (VTC-Fall ’16), pp. 1–5 (2016)Google Scholar
  28. 28.
    Westermann, B., Gligoroski, D., Knapskog, S.: Comparison of the power consumption of the 2nd round SHA-3 candidates. In: Gusev, M., Mitrevski, P. (eds.) Proceedings 2nd International Conference on ICT Innovations, pp. 102–113. Berlin, Heidelberg (2010)Google Scholar
  29. 29.
    Roman, R., Najera, P., Lopez, J.: Securing the Internet of Things. Computer 44(9), 51–58 (2011)CrossRefGoogle Scholar
  30. 30.
    Yu, G., Wang, X., Zha, X., Zhang, J.A., Liu, R.P.: An optimized round-robin scheduling of speakers for peers-to-peers-based byzantine faulty tolerance. In: 2018 Proceedings IEEE Globecom Workshops (GC Wkshps ’18) (2018)Google Scholar
  31. 31.
    Kravitz, D.W., Cooper, J.: Securing user identity and transactions symbiotically: IoT meets Blockchain. In: Proceedings Global Internet Things Summit (GIoTS ’17), pp. 1–6 (2017)Google Scholar
  32. 32.
    Sharma, P.K., Singh, S., Jeong, Y.S., Park, J.H.: DistBlockNet: a distributed blockchains-based secure SDN architecture for IoT networks. IEEE Commun. Mag. 55(9), 78–85 (2017)CrossRefGoogle Scholar
  33. 33.
    Vukolić, M.: The quest for scalable blockchain fabric: Proof-of-work vs. BFT replication. In: International Workshop on Open Problems in Network Security, pp. 112–125. Springer (2015)Google Scholar
  34. 34.
  35. 35.
    Andriopoulou, F., Orphanoudakis, T., Dagiuklas, T.: IoTA: IoT automated SIP-based emergency call triggering system for general eHealth purposes. In: 2017 IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), pp. 362–369. Rome (2017).  https://doi.org/10.1109/wimob.2017.8115830
  36. 36.
    Lamtzidis, O., Gialelis. J.: An IOTA based distributed sensor node system. In: 2018 IEEE Globecom Workshops (GC Wkshps), pp. 1–6. Abu Dhabi, United Arab Emirates (2018).  https://doi.org/10.1109/glocomw.2018.8644153
  37. 37.
    Dasalukunte, D., Mehmood, S., Öwall, V.: Complexity analysis of IOTA filter architectures in faster-than-Nyquist multicarrier systems. In: 2011 NORCHIP, pp. 1–4. Lund (2011).  https://doi.org/10.1109/norchp.2011.6126704
  38. 38.
    Baker, P.: Investors Pounce on IOTA as Jaguar Land Rover Announces Crypto Integration (2019). https://cryptobriefing.com/iota-jaguar-land-rover-crypto/. Accessed 20 Sept 2019

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Mohammad Ayoub Khan
    • 1
  • Fahad Algarni
    • 1
  • Mohammad Tabrez Quasim
    • 1
    Email author
  1. 1.College of Computing and Information TechnologyUniversity of BishaBishaSaudi Arabia

Personalised recommendations