Advertisement

The Model for Evaluating Criteria Describing the Internal Safety of a Railway Trip by International Train

  • Lijana MaskeliūnaitėEmail author
  • Henrikas Sivilevičius
Conference paper
  • 27 Downloads
Part of the Lecture Notes in Intelligent Transportation and Infrastructure book series (LNITI)

Abstract

The transport system must increase the mobility of the national population, gross domestic product (GDP) and remain environmentally friendly and safe. Rail transport is increasingly becoming popular for both long-distance freight and passengers. This trend is affected by an increase in safety travelling by train, which significantly improves the quality of the trip. The paper presents a mathematical model that allows calculating a share of the indicator for the quality of traveling by international train, which depends on the impact of criteria for internal safety in the carriage. The weights of eight sub-criteria for the main criteria falling into group D have been determined applying the Analytic Hierarchy Process (AHP) method, whereas their variables have been estimated using original formulas. The resolved numerical example admits that the introduced model is suitable and convenient to be employed in practice assessing the quality of the international train in a single number. The actual data on the international train Vilnius-Moscow indicating the adequacy of internal security measures have been used for the numerical example.

Keywords

Railway transport Passenger Quality of the trip Internal safety Criterion importance 

References

  1. 1.
    Alexandrou, G., Kouroussis, G., Verlinden, O.: A comprehensive prediction model for vehicle/track/soil dynamic response dueto wheel flats. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 230(4), 1088–1104 (2016).  https://doi.org/10.1177/0954409715576015CrossRefGoogle Scholar
  2. 2.
    Zakeri, J.A., Esmaeili, M., Kasraei, A., Bakhtiary, A.: A numerical investigation on the lateral resistance of frictional sleepers in ballasted railway tracks. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 230(2), 440–449 (2016).  https://doi.org/10.1177/0954409714543507CrossRefGoogle Scholar
  3. 3.
    Bureika, G., Komaisko, M., Jastremskas, V.: Modelling the ranking of Lithuanian railways level crossing by safety level. Transp. Probl. 12, 11–22 (2017).  https://doi.org/10.20858/tp.2017.12.se.1CrossRefGoogle Scholar
  4. 4.
    Vileiniskis, M., Remenyte-Prescott, R., Rama, D.: A fault detection method for railway point systems. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(3), 852–865 (2016).  https://doi.org/10.1177/0954409714567487CrossRefGoogle Scholar
  5. 5.
    Kuo, C.-M., Lin, C.-C.: Analysis of derailment criteria. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(4), 1158–1163 (2016).  https://doi.org/10.1177/0954409715583692CrossRefGoogle Scholar
  6. 6.
    Osenin, Y.Iv, Degtyareva, L., Osenina, G., Sergienko, O., Chesnokov, A.: Using a wheel pair with a counter-flange to prevent derailment. Transp. Probl. Problemy Transportu 12(2), 13–18 (2017)CrossRefGoogle Scholar
  7. 7.
    Wu, X., Chi, M., Gao, H., Zhang, D., Zeng, J., Wu, P., Zhu, M.: The study of post-derailment measures to limiting the extent of a derailment. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(1), 64–76 (2016).  https://doi.org/10.1177/0954409714526586CrossRefGoogle Scholar
  8. 8.
    Cheng, Y.-C., Hsu, C.-T.: Derailment safety analysis fora tilting railway vehicle moving on irregular tracks shaken by an earthquake. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(3), 625–642 (2016). 10.1177/0954409714553255MathSciNetCrossRefGoogle Scholar
  9. 9.
    Ataei, Sh, Mohammadzadeh, S., Jadidi, H., Miri, A.: Effects of maintenance operations on railway track’s mechanical behavior by field load testing. Int. J. Pavement Eng. 15(3–4), 215–227 (2014).  https://doi.org/10.1080/10298436.2013.778991CrossRefGoogle Scholar
  10. 10.
    Paixão, A., Fortunato, E., Calçada, R.: A numerical study on the influence of backfill settlements in the train/track interaction at transition zones to railway bridges. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(3), 866–878 (2016).  https://doi.org/10.1177/0954409715573289CrossRefGoogle Scholar
  11. 11.
    Lazarević, L., Vučković, D., Popović, Z.: Assessment of slepper support conditions using mikro-tremor analysis. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(8), 1828–1841 (2016).  https://doi.org/10.1177/0954409715615629CrossRefGoogle Scholar
  12. 12.
    Luin, B., Petelin, S.: Impact of road geometry on vehicle energy consumption. Transp. Probl. Problemy Transportu 12(2), 77–87 (2017).  https://doi.org/10.20858/tp.2017.12.28CrossRefGoogle Scholar
  13. 13.
    Xin, T., Famurewa, S.M., Gao, L., Kumar, U., Zhang, Q.: Grey-system-theory-based model for the prediction of track geometry quality. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(7), 1735–1744 (2016).  https://doi.org/10.1177/0954409715610603CrossRefGoogle Scholar
  14. 14.
    Gailienė, I., Gedaminskas, M., Laurinavičius, A.: Approach to rational calculation of superelevation in dual gauge track. Transport 33(3), 699–706 (2018).  https://doi.org/10.3846/transport.2018.1577CrossRefGoogle Scholar
  15. 15.
    Caetano, L.F., Texeira, P.F.: Predictive maintenance model for ballast tamping. J. Transp. Eng. 142(4), 04016006 (2016).  https://doi.org/10.1061/(ASCE)TE.1943-5CrossRefGoogle Scholar
  16. 16.
    Jönsson, J., Arasteh Khouy, I., Lundberg, J., Rantatalo, M., Nissen, A.: Measurement of vertical geometry variations in railway turnouts exposed to different operating conditions. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(2), 486–501 (2016).  https://doi.org/10.1177/0954409714546205CrossRefGoogle Scholar
  17. 17.
    Asplund, M., Palo, M., Famurewa, S., Rantatolo, M.: A study of railway wheel profile parameters used as indicators of an increased risk of wheel defects. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(2), 323–334 (2016).  https://doi.org/10.1177/0954409714541953CrossRefGoogle Scholar
  18. 18.
    Uzzal, R.U.A., Ahmed, W., Bhat, R.B.: Impact analysis due to multiple wheel flats in three-dimensional railway vehicle-track system model and development of a smart wheels et. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(2), 450–471 (2016).  https://doi.org/10.1177/0954409714545558CrossRefGoogle Scholar
  19. 19.
    Wang, K., Huang, C., Zhai, W., Liu, P., Wang, S.: Progress on wheel-rail dynamic performance of railway curve negotiation. J. Traffic Transp. Eng. 1(3), 209–220 (2014).  https://doi.org/10.1016/S2095-7564(15)30104-5CrossRefGoogle Scholar
  20. 20.
    Moreno-Rios, M., Gallardo-Hernández, E.A., Vite-Torres, M., Peña-Bautista, A.: Field and laboratory assessments of the friction coefficient at a railhead. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(1), 313–320 (2016).  https://doi.org/10.1177/0954409714536383CrossRefGoogle Scholar
  21. 21.
    Sobolevska, M., Telychko, I.: Passive safety of high-speed passenger trains at accident collisions on 1520 mm gauge railways. Transp. Probl. Problemy Transportu 12(1), 51–62 (2017).  https://doi.org/10.20858/tp.2017.12.1.5CrossRefGoogle Scholar
  22. 22.
    Meran, A.P., Baykasoglu, C., Mugan, A., Toprak, T.: Development of a design for a crash energy management system for use in a railway passenger car. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(1), 206–219 (2016).  https://doi.org/10.1177/0954409714533321CrossRefGoogle Scholar
  23. 23.
    Holloway, C., Thoreau, R., Roan, T.-R., Boampong, D., Clarke, T., Watts, D., Tyler, N.: Effect of vertical step height on boarding and alighting time of train passengers. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 230(4), 1234–1241 (2016).  https://doi.org/10.1177/0954409715590480CrossRefGoogle Scholar
  24. 24.
    Gailienė, I., Skerys, K., Ciparytė, G.: Investigation traffic safety situation at the level crossings in Lithuania. Baltic J. Road Bridge Eng. 8(2), 117–123 (2013).  https://doi.org/10.3846/bjrbe.2013.15CrossRefGoogle Scholar
  25. 25.
    Aleksić, D., Marković, M., Vasiljević, M., Stojić, G., Pavlović, N., Tanackov, I.: Analysis of impact of meteorogical conditions on human factors in estimating therisk of railway accidents. Transport 33(5), 1121–1134 (2018).  https://doi.org/10.3846/16484142.2017.1332684CrossRefGoogle Scholar
  26. 26.
    Xue, X., Robinson, M., Schmid, F., Smith, R.: Development issues for impact safety of rail vehicles: robustness of crashworthy designs, effect of structural crashworthiness on passenger safety and behavior characterization of vehicle materials. Proc. Inst. Mech. Eng. Part F: J. Rail and Rapid Transit 232(2), 461–470 (2018).  https://doi.org/10.1177/0954409716674982CrossRefGoogle Scholar
  27. 27.
    Chen, S., Leng, Y., Mao, B., Liu, S.: Integrated weight-based multi-criteria evaluation on transfer in large transport terminals: a case study of the Beijing South railway Station. Transp. Res. Part A: Pol. Pract. 66, 14–26 (2014).  https://doi.org/10.1016/j.tra2014.04.015CrossRefGoogle Scholar
  28. 28.
    Dolinayova, A., Camaj, J., Kanis, J.: Charging railway infrastructure models and their impact to competitiveness of railway transport. Transp. Probl. Problemy Transportu 12(1), 139–150 (2017).  https://doi.org/10.20858/tp.2017.12.13CrossRefGoogle Scholar
  29. 29.
    Potoglou, D., Rabinson, N., Kim, C.W., Burge, P., Warnes, R.: Quantifying individuals’ trade-offs between privacy, liberty and security. Transp. Res. Part A 44, 169–181 (2010).  https://doi.org/10.1016/j.tra.2009.12.006CrossRefGoogle Scholar
  30. 30.
    Gulijk, C.V., Hughes, P., Figueres-Esteban, M., El-Rashidy, R., Bearfield, G.: The case for IT transformation and big data for safety risk management on the GB railways. Proc. Inst. Mech. Eng. Part O: J. Risk Reliab. 232(2), 151–163 (2018).  https://doi.org/10.1177/1748006x17728210CrossRefGoogle Scholar
  31. 31.
    Havârneanu, G.M.: Behavioural and organizational interventions to prevent trespass and graffiti vandalism on railway property. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 231(10), 1078–1087 (2017).  https://doi.org/10.1177/0954409716675004CrossRefGoogle Scholar
  32. 32.
    Crawford, E.G.C., Toft, Y., Kift, R.L.: New control room technologies: human factors analytical tools for railway safety. Proc. Inst. Mech. Eng. Part F: J. Rail Rapid Transit 227(5), 529–538 (2013).  https://doi.org/10.1177/0954409713501656CrossRefGoogle Scholar
  33. 33.
    Sivilevičius, H., Maskeliūnaitė, L.: Multiple criteria evaluation and the inverse hierarchy model for justifying the choise of rail transport mode. Promet Traffic Transp. 30(1), 57–69 (2018).  https://doi.org/10.7307/ptt.v30i1.2417CrossRefGoogle Scholar
  34. 34.
    Maskeliunaite, L., Sivilevicius, H.: Applying AHP technique to the assessment of railway trip quality (RTQ). In: Čygas, D., Froehner, K.D. (eds.). Proceedings of the 8th International Conference “Environment Engineering”. Selected papers. May 19– 20 2011, vol. 3, pp. 1133–1141. Technika, Vilnius (2011). ISSN 2029-7106Google Scholar
  35. 35.
    Maskeliūnaitė, L., Sivilevičius, H.: Expert evaluation of criteria describing the quality of travelling by international passenger train: technological, economic and safety perspectives. Technol. Econ. Dev. Econ. 18(3), 544–566 (2012).  https://doi.org/10.3846/20294913.2012.710178CrossRefGoogle Scholar
  36. 36.
    Sivilevičius, H., Maskeliūnaitė, L.: The criteria for identifying the quality of passengers’ transportation by railway and their ranking using AHP method. Transport 25(4), 368–381 (2010).  https://doi.org/10.3846/transport.2010.46CrossRefGoogle Scholar
  37. 37.
    Maskeliūnaitė, L.: Tarptautinio keleivių vežimo geležinkeliais proceso kokybės tyrimo daugiatikslis modelis [The model for multicriteria evaluation of the quality of passenger transportation by international trains]: Doctoral dissertation. Vilnius Gediminas Technical University.: Technika, Vilnius (2012). 165 p. ISBN 978-609-457-361-3Google Scholar
  38. 38.
    Sivilevičius, H., Maskeliūnaitė, L.: The numerical example for evaluating the criteria describing the quality of the trip by international train. Ekonomie a Management E&M Econ. Manag. 2(17), 73–86 (2014).  https://doi.org/10.15240/tul/001/2014-2-006CrossRefGoogle Scholar
  39. 39.
    Sivilevičius, H., Maskeliūnaitė, L., Petkevičienė, B., Petkevičius, K.: The model of evaluating the criteria, describing the quality of organization and technology of travel by international train. Transport 27(3), 307–319 (2012).  https://doi.org/10.3846/16484142.2012.724448CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Lijana Maskeliūnaitė
    • 1
    Email author
  • Henrikas Sivilevičius
    • 1
  1. 1.Department of Mobile Machinery and Railway TransportVilnius Gediminas Technical UniversityVilniusLithuania

Personalised recommendations