Advertisement

Almost Periodic Functions and Generalizations on Complete-Closed Time Scales

  • Chao Wang
  • Ravi P. Agarwal
  • Donal O’Regan
  • Rathinasamy Sakthivel
Chapter
  • 32 Downloads
Part of the Developments in Mathematics book series (DEVM, volume 62)

Abstract

This Chapter mainly deals with almost periodic functions and its generalizations on complete-closed time scales under translations and it is divided into six sections and is organized as follows. In Sect. 3.1, some basic results of almost periodic functions are established which include their Bochner and Bohr form. In Sect. 3.2, the definitions of Bohr-Transform and Mean-Value of uniformly almost periodic functions are introduced and their corresponding results are presented. In Sect. 3.3, under the complete closedness of time scales, generalized pseudo almost periodic functions are introduced and some basic properties are investigated. In Sect. 3.4, we introduce the concept of Π-semigroup and moving operators and provide some of their fundamental properties. In Sect. 3.5, two equivalent definitions of relatively dense set on a group are introduced and discussed. Section 3.6 establishes properties of abstract weighted pseudo almost periodic functions. In Sect. 3.7, we introduce almost periodic functions on changing-periodic time scales and establish some basic properties under which almost periodic problems on an arbitrary time scales without complete closedness can be considered.

References

  1. 17.
    Agarwal, R.P., Andrade, B.D., Cuevas, C.: Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations. Nonlinear Anal. Real World Appl. 11, 3532–3554 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 18.
    Agarwal, R.P., Cuevas, C., Soto, H.: Pseudo-almost periodic solutions of a class of semilinear fractional differential equations. J. Appl. Math. Comput. 37, 625–634 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 43.
    Amir, B., Maniar, L.: Composition of pseudo-almost periodic functions and Cauchy problems with operator of nondense domain. Ann. Math. Blaise Pascal 6, 1–11 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 44.
    A.M. Fink, Almost Periodic Differential Equations. Lecture Notes in Mathematics, vol. 377. Springer, Berlin (1974)Google Scholar
  5. 45.
    Andres, J., Pennequin, D.: On Stepanov almost-periodic oscillations and their discretizations. J. Differ. Equ. Appl. 18, 1665–1682 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 55.
    Baillon, J.B., Blot, J., N’Guérékata, Pennequin, D.: On C n-almost periodic solutions to some nonautonomous differential equations in Banach spaces. Ann. Soc. Math. Polonae Ser. 1 XLVI(2), 263–273 (2006)Google Scholar
  7. 56.
    Baroun, M., Boulite, S., Diagana, T., Maniar, L.: Almost periodic solutions to some semilinear non-autonomous thermoelastic plate equations. J. Math. Anal. Appl. 349, 74–84 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 57.
    Besicovitch, A.: Almost Periodic Functions. Cambridge University Press, Cambridge (1932)zbMATHGoogle Scholar
  9. 58.
    Bezandry, P., Diagana, T.: Almost Periodic Stochastic Processes. Springer, Berlin (2011)zbMATHCrossRefGoogle Scholar
  10. 59.
    Bohr, H.: Zur Theorie der fastperiodischen Funktionen I. Acta Math. 45, 129–127 (1925)MathSciNetCrossRefGoogle Scholar
  11. 60.
    Bochner, S., Neumann., J.V.: Almost periodic function in a group II. Trans. Am. Math. Soc. 37, 21–50 (1935)Google Scholar
  12. 61.
    Bochner, S.: Uniform convergence of monotone sequences of functions. Proc. Natl. Acad. Sci. U.S.A. 47, 582–585 (1961)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 63.
    Bochner, S.: Continuous mappings of almost automorphic and almost periodic functions. Proc. Natl. Acad. Sci. USA 52, 907–910 (1964)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 70.
    Bugajewski, D., N’Guérékata, G.M.: On some classes of almost periodic functions in abstract spaces. Int. J. Math. Math. Sci. 61, 3237–3247 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 71.
    Bugajewski, D., Diagana, T., Mahop, C.M.: Asymptotic and pseudo-almost periodicity of the convolution operator and applications to differential and integral equations. Z. Anal. Anwend. 25, 327–340 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 73.
    Corduneanu, C.: Almost Periodic Functions, 2nd edn. Chelsea, New York, NY (1989)Google Scholar
  17. 75.
    Conway, J.B.: A Course in Funtional Analysis. Springer, New York (1985)CrossRefGoogle Scholar
  18. 76.
    Cuevas, C., Alex, S., Soto, H.: Almost periodic and pseudo-almost periodic solutions to fractional differential and integro-differential equations. Appl.Math. Comput. 218, 1735–1745 (2011)MathSciNetzbMATHGoogle Scholar
  19. 77.
    Cuevas, C., Hernández, E.M.: Pseudo-almost periodic solutions for abstract partial functional differential equations. Appl. Math. Lett. 22(4), 534–538 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 78.
    Cuevas, C., Pinto, M.: Existence and uniqueness of pseudo-almost periodic solutions of semilinear Cauchy problems with non dense domain. Nonlinear Anal. Ser. A Theory Methods Appl. 45, 73–83 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 90.
    Dads, E.A., Ezzinbi, K., Arino, O.: Pseudo-almost periodic solutions for some differential equations in a Banach space. Nonlinear Anal. Theory Methods Appl. 28, 1141–1155 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 91.
    Dads, E.A., Arino, O.: Exponential dichotomy and existence of pseudo-almost periodic solutions of some differential equations. Nonlinear Anal. Theory Methods Appl. 27, 369–386 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 96.
    Diagana, T.: Almost periodic solutions for some higher-order nonautonomous differential equations with operator coefficients. Math. Comput. Model. 54, 2672–2685 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 97.
    Diagana, T.: Almost periodic solutions to some second-order nonautonomous differential equations. Proc. Am. Math. Soc. 140, 279–289 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 98.
    Diagana, T., Hernández, E.M., Rabello, M.: Pseudo-almost periodic solutions to some non-autonomous neutral functional differential equations with unbounded delay. Math. Comput. Model. 45, 1241–1252 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 99.
    Diagana, T.: Stepanov-like pseudo-almost periodicity and its applications to some nonautonmous differential Equations. Nonlinear Anal. 69, 4277–4285 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 100.
    Diagana, T.: Pseudo-almost periodic solutions to some differential equations. Nonlinear Anal. 60, 1277–1286 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 101.
    Diagana, T., Pseudo-Almost Periodic Functions in Banach Spaces. Nova Science, New York (2007)zbMATHGoogle Scholar
  29. 102.
    Diagana, T., Elaydi, S., Yakubu, A.: Population models in almost periodic environments. J. Differ. Equ. Appl. 13, 239–260 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 103.
    Diagana, T., Hernández, E,M.: Existence and uniqueness of pseudo-almost periodic solutions to some abstract partial neutral functional-differential equations and applications. J. Math. Anal. Appl. 327, 776–791 (2007)Google Scholar
  31. 104.
    Diagana, T.: Existence of almost periodic solutions to some third-order nonautonomous differential equations. Electron. J. Qual. Theory Differ. Equ. 66, 1–12 (2011)MathSciNetzbMATHGoogle Scholar
  32. 105.
    Diagana, T., N’Guérékata, G.M.: Pseudo-almost periodic mild solutions to hyperbolic evolution equations in abstract intermediate Banach spaces. Appl. Anal. 85, 769–780 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 106.
    Diagana, T.: Existence of weighted pseudo-almost periodic solutions to some classes of hyperbolic evolution equations. J. Math. Anal. Appl. 350, 18–28 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 107.
    Diagana, T.: Weighted pseudo-almost periodic functions and applications. C. R. Acad. Sci. Paris Ser. I 343, 643–646 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 108.
    Diagana, T., Mophou, G.M., N’Guérékata, G.M.: Existence of weighted pseudo-almost periodic solutions to some classes of differential equations with Sp-weighted pseudo-almost periodic coefficients. Nonlinear Anal. 72, 430–438 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 109.
    Diagana, T.: Weighted pseudo-almost periodic solutions to a neutral delay integral equation of advanced type. Nonlinear Anal. 70, 298–304 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 113.
    Diagana, T.: The existence of a weighted mean for almost periodic functions. Nonlinear Anal. 74, 4269–4273 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 114.
    Diagana, T.: Pseudo-almost periodic solutions for some classes of nonautonomous partial equations. J. Franklin Inst. 348, 2082–2098 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 122.
    Ding, H.S., Liang, J., N’Guérékata, G.M., Xiao, T.J.: Pseudo-almost periodicity of some nonautonomous evolution equations with delay. Nonlinear Anal. 67, 1412–1418 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 123.
    Ding, H.S., Liang, J., N’Guérékata, G.M., Xiao, T.J.: Mild pseudo-almost periodic solutions of nonautonomous semilinear evolution equations. Math. Comput. Model. 45, 579–584 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 124.
    Ding, H.S., Fu, J.D., N’Guérékata, G.M.: Positive almost periodic type solutions to a class of nonlinear difference equations. Electron. J. Qual. Theory Differ. Equ. 25, 1–16 (2011)MathSciNetCrossRefGoogle Scholar
  42. 125.
    Ding, H.S., Long, W., N’Guérékata, G.M.: Almost periodic solutions to abstract semilinear evolution equations with Stepanov almost periodic coefficients. J. Comput. Anal. Appl. 13, 231–242 (2011)MathSciNetzbMATHGoogle Scholar
  43. 126.
    Ezzinbi, K., Fatajou, S., N’Guérékata, G.M.: Massera type theorem for the existence of C n- almost periodic solutions for partial functional differential equations with infinite delay. Nonlinear Anal. 69, 1413–1424 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 145.
    Hamzaa, A.E., Oraby, K.M.: Semigroups of operators and abstract dynamic equations on time scales. Appl. Math. Comput. 270, 334–348 (2015)MathSciNetzbMATHGoogle Scholar
  45. 147.
    Hernández, E.M., Santos, J.P.C.: Asymptotically almost periodic and almost periodic solutions for a class of partial integrodifferential equations. Electron. J. Differ. Equ. 2006, 1–8 (2006)MathSciNetGoogle Scholar
  46. 148.
    Hernández, E.M., Santos, J.P.C.: Asymptotically almost periodic and almost periodic solutions for partial neutral integrodifferential equations. Z. Anal. Anwend. 26(3), 261–375 (2007)MathSciNetzbMATHGoogle Scholar
  47. 149.
    Hernández, E.M., Pelicer, M.L.: Asymptotically almost periodic and almost periodic solutions for partial neutral differential equations. Appl. Math. Lett. 18, 1265–1272 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 152.
    Ji, D., Zhang, C.: Translation invariance of weighted pseudo-almost periodic functions and related problems. J. Math. Anal. Appl. 391, 350–362 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 178.
    Liang, J., Xiao, T.J., Zhang, J.: Decomposition of weighted pseudo-almost periodic functions. Nonlinear Anal. 73, 3456–3461 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 179.
    Liang, J., Maniar, L., N’Guérékata, G.M., Xiao, T.J.: Existence and uniqueness of C n-almost periodic solutions to some ordinary differential equations. Nonlinear Anal. 66(9), 1899–1910 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 180.
    Liang, J., N’Guérékata, G.M., Xiao, T.J., Zhang, J: Some properties of pseudo-almost automorphic functions and applications to abstract differential equations. Nonlinear Anal. 70, 2731–2735 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 188.
    Marks, R.J., Gravagne, I.A., Davis, J.M.: A generalized Fourier transform and convolution on time scales. J. Math. Anal. Appl. 340, 901–919 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 189.
    Neumann., J.V.: Almost periodic functions in a group, I. Trans. Am. Math. Soc. 36, 445–492 (1934)Google Scholar
  54. 197.
    Pinto, M.: Pseudo-almost periodic solutions of neutral integral and differential equations with applications. Nonlinear Anal. 72(12), 4377–4383 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 208.
    Thomas, A.M.: Transforms on Time Scales. BS, The University of Georgia (2001)Google Scholar
  56. 214.
    Wang, C., Agarwal, R.P., O’Regan, D.: Weighted piecewise pseudo double-almost periodic solution for impulsive evolution equations. J. Nonlinear Sci. Appl. 10, 3863–3886 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 219.
    Wang, C., Agarwal, R.P., O’Regan, D.: Π-semigroup for invariant under translations time scales and abstract weighted pseudo almost periodic functions with applications. Dyna. Syst. Appl. 25, 1–28 (2016)MathSciNetzbMATHGoogle Scholar
  58. 220.
    Wang, C.: Almost periodic solutions of impulsive BAM neural networks with variable delays on time scales. Commun. Nonlinear Sci. Numer. Simul. 19, 2828–2842 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 224.
    Wang, C., Sakthivel, R.: Double almost periodicity for high-order Hopfield neural networks with slight vibration in time variables. Neurocomputing 282, 1–15 (2018)CrossRefGoogle Scholar
  60. 226.
    Wang, C., Agarwal, R.P., O’Regan, D.: n 0-order Δ-almost periodic functions and dynamic equations. Appl. Anal. 97, 2626–2654 (2018)Google Scholar
  61. 237.
    Wang, C., Agarwal, R.P., O’Regan, D.: δ-almost periodic functions and applications to dynamic equations. Mathematics 7, 525 (2019).  https://doi.org/10.3390/math7060525
  62. 243.
    Wang, C., Agarwal, R.P., O’Regan, D.: Calculus of fuzzy vector-valued functions and almost periodic fuzzy vector-valued functions on time scales. Fuzzy Sets Syst. 375, 1–52 (2019)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 248.
    Zhang, C.: Almost Periodic Type Functions and Ergocity. Kluwer, Dordrecht (2003)CrossRefGoogle Scholar
  64. 249.
    Zhang, C.: Pseudo-almost periodic solutions of some differential equations. J. Math. Anal. Appl. 151, 62–76 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 250.
    Zhang, C.: Integration of vector-valued pseudo almost periodic functions. Proc. Am. Math. Soc. 121, 167–174 (1994)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of MathematicsYunnan UniversityKunmingChina
  2. 2.Department of MathematicsTexas A&M University—KingsvilleKingsvilleUSA
  3. 3.School of Mathematics, Statistics and Applied MathematicsNational University of IrelandGalwayIreland
  4. 4.Department of Applied MathematicsBharathiar UniversityCoimbatoreIndia

Personalised recommendations