Fractional Right Local General M-Derivative

  • George A. AnastassiouEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 886)


Here is introduced and studied the right fractional local general M-derivative of various orders. All basic properties of an ordinary derivative are established here. We also define the corresponding right fractional M-integrals. Important theorems are established such as: the inversion theorem, the fundamental theorem of fractional calculus, the mean value theorem, the extended mean value theorem, the right fractional Taylor’s formula with integral remainder, the integration by parts.


  1. 1.
    T. Abdeljawad, On conformable fractional calculus. J. Comput. Appl. Math. 279, 57–66 (2015)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    G.A. Anastassiou, Fractional Differentiation Inequalities (Springer, Heidelberg, 2009)CrossRefzbMATHGoogle Scholar
  3. 3.
    G.A. Anastassiou, About the right fractional local general \(M\)-derivative, submitted for publication (2019)Google Scholar
  4. 4.
    R. Gorenflo, A.A. Kilbas, F. Mainardi, S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications (Springer, Berlin, 2014)CrossRefzbMATHGoogle Scholar
  5. 5.
    U.N. Katugampola, A new fractional derivative with classical properties (2014). arXiv:1410.6535v2
  6. 6.
    R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)Google Scholar
  7. 7.
    G.W. Leibniz, Letter from Hanover, Germany, to G.F.A L’Hospital, September 30, 1695, Leibniz Mathematische Schriften (Olms-Verlag, Hildescheim), pp. 301–302 (First published in 1849)Google Scholar
  8. 8.
    G.M. Mittag-Leffler, Sur la nouvelle fonction \(\mathbb{E}_{\alpha }\left( x\right) \). CR Acad. Sci. Paris 137, 554–558 (1903)zbMATHGoogle Scholar
  9. 9.
    J.V.C. Sousa, E.C. de Oliveira, On the local \(M\)-derivative. Progr. Fract. Differ. Appl. 4(4), 479–492 (2018)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Mathematical SciencesUniversity of MemphisMemphisUSA

Personalised recommendations