Gears pp 203-245 | Cite as

Load Carrying Capacity of Bevel Gears: Factors Influencing Load Conditions

  • Vincenzo VulloEmail author
Part of the Springer Series in Solid and Structural Mechanics book series (SSSSM, volume 11)


In this chapter, the main factors influencing the load carrying capacity of bevel gears in a broadest meaning, including straight, helical (or skew), spiral bevel, Zerol and hypoid gears, are first defined. Virtual cylindrical gears equivalent to the various bevel gears of interest are then determined. The various methods of calculating the influence factors (application factor, dynamic factor, face load factors and transverse load factors) are then described, focusing attention on the main quantities they depend on, and how to take them into account. In this framework, similar problems already seen for cylindrical spur and helical gears are tackled, passing over the aspect already discussed, and focusing attention on those specific of these types of gears, including those concerning the calculation of these factors based on the ISO standards.


  1. Biezeno CB, Grammel R (1953) Technische Dynamik: Dampfturbinen und Brennkraftmaschinen, Zweiter Band, Zweite Erweiterte Auflage. Springer-Verlag, BerlinCrossRefGoogle Scholar
  2. Buchanan R (1823) Practical essays on mill work and other machinery, with notes and additional articles, containing new researches on various mechanical subjects by Thomas Tredgold. J. Taylor, LondonGoogle Scholar
  3. Buckingham E (1949) Analytical mechanics of gears. McGraw-Hill Book Company Inc, New YorkGoogle Scholar
  4. Budynas RG, Nisbett JK (2009) Shigley’s mechanical engineering design, 8th edn. McGraw-Hill Companies Inc, New YorkGoogle Scholar
  5. Coleman W, Lehmann EP, Mellis DW, Peel DM (1969) Advancement of straight and spiral bevel gear technology. USAAVLABS technical report 69-75, U.S. Army Aviation Material Laboratories, Fort Eustis, VA (Virginia), pp 1–267Google Scholar
  6. Den Hartog JP (1985) Mechanical vibrations. Dover Publications Inc, New YorkzbMATHGoogle Scholar
  7. Dudley DW (1962) Gear handbook. McGraw-Hill Book Company Inc, New YorkGoogle Scholar
  8. Fatemi A, Yang L (1998) Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials. Int J Fatigue 20(1):9–34CrossRefGoogle Scholar
  9. Gagnon P, Gosselin C, Cloutier L (1997) Analysis of spur and straight bevel gear teeth deflection by the finite strip method. ASME J Mech Des 119(4):421–426CrossRefGoogle Scholar
  10. Giovannozzi R (1965) Costruzione di Macchine, vol II, 4td ed. Casa Editrice Prof. Riccardo Pàtron, BolognaGoogle Scholar
  11. Gosselin C, Cloutier L, Nguyen QD (1995) A general formulation for the calculation of the load sharing and transmission error under load of spiral bevel and hypoid gears. Mech Mach Theory 30(3):433–450CrossRefGoogle Scholar
  12. Henriot G (1979) Traité thèorique and pratique des engrenages, vol 1, 6th edn. Bordas, ParisGoogle Scholar
  13. ISO 10300-1:2014 Calculation of load capacity of bevel gears—part 1: introduction and general influence factorsGoogle Scholar
  14. ISO 10300-2:2014 Calculation of load capacity of bevel gears—part 2: calculation of surface durability (pitting)Google Scholar
  15. ISO 10300-3:2014 Calculation of load capacity of bevel gears—part 3: calculation of tooth root strengthGoogle Scholar
  16. ISO 17485 2006 Bevel gears—ISO system of accuracyGoogle Scholar
  17. Kagawa T (1961) Deflections and moments due to a concentrated edge-load on a cantilever plate of infinite length. In: Proceedings of 11th Japan National Congress for Applied Mechanics, pp 47–52Google Scholar
  18. Ker Wilson W (1956) Practical solution of torsional vibration problems, vol I. Chapman and Hall, LondonzbMATHGoogle Scholar
  19. Ker Wilson W (1963) Practical solution of torsional vibration problems, vol II. Chapman and Hall, LondonzbMATHGoogle Scholar
  20. Kolivand M, Kahraman A (2009) A load distribution model for hypoid gears using ease-off topography and shell theory. Mech Mach Theory 44:1848–1865CrossRefGoogle Scholar
  21. Krall G (1970a) Meccanica Tecnica delle Vibrazioni: Parte Prima Sistemi Discreti. Eredi Virgilio Veschi, RomaGoogle Scholar
  22. Krall G (1970b) Meccanica Tecnica delle Vibrazioni: Parte Seconda Sistemi Continui. Eredi Virgilio Veschi, RomaGoogle Scholar
  23. Litvin FL, Fuentes A (2004) Gear geometry and applied theory, 2nd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  24. Maitra GM (1994) Handbook of gear design, 2nd edn. Tata McGraw-Hill Publishing Company Ltd., New DelhiGoogle Scholar
  25. Merritt HE (1954) Gears, 3th edn. Sir Isaac Pitman & Sous, Ltd, LondonGoogle Scholar
  26. Miner MA (1945) Cumulative damage in fatigue. J Appl Mech 12:A159–A164Google Scholar
  27. Niemann G, Winter H (1983) Maschinen-Elemente, band III: Schraubrad-, Kegelrad-, Schnecken-, Ketten-, Rienem-, Reibradgetriebe, Kupplungen, Bremsen, Freiläufe. Berlin Heidelberg, Springer-VerlagGoogle Scholar
  28. Palmgren A (1924) Die Lebensdauer von Kugellagern. Verfahrenstechinik, Berlin 68:339–341Google Scholar
  29. Pollone G (1970) Il Veicolo. Libreria Editrice Universitaria Levrotto & Bella, TorinoGoogle Scholar
  30. Radzevich SP (2016) Dudley’s handbook of practical gear design and manufacture, 3rd edn. CRC Press, Taylor&Francis Group, Boca Raton, FloridaCrossRefGoogle Scholar
  31. Sheveleva GI, Volkov AE, Medvedev VI (2007) Algorithms for analysis of meshing and contact of spiral bevel gears. Mech Mach Theory 42(2):198–215CrossRefGoogle Scholar
  32. Shtipelman BA (1978) Design and manufacture of hypoid gears. John Wiley&Sons Canada, LimitedGoogle Scholar
  33. Simon VV (2009) Design and manufacture of spiral bevel gears with reduced transmission errors. ASME J Mech Des 131(4)Google Scholar
  34. Stadtfeld HJ (1993) Handbook of bevel and hypoid gears. Rochester Institute of Engineering, Rochester, New YorkGoogle Scholar
  35. Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells, 2nd edn. McGraw-Hill International Editions, SingaporeGoogle Scholar
  36. Timoshenko SP, Young DH (1951) Engineering mechanics. McGraw-Hill Book Company, New YorkzbMATHGoogle Scholar
  37. Ventsel E, Krauthammer T (2001) Thin plates and shells: theory, analysis, and applications. Marcel Dekker. Inc, New YorkCrossRefGoogle Scholar
  38. von Kármán T, Biot MA (1940) Mathematical methods in engineering. McGraw-Hill Book Company, New YorkzbMATHGoogle Scholar
  39. Wang J, Lim TC, Li M (2007) Dynamics of a hypoid gear pair considering the effects of time-varying mesh parameters and backlash nonlinearity. J Sound Vib 308:302–329CrossRefGoogle Scholar
  40. Warburton GB (1976) The dynamical behaviour of structures, 2nd edn. Pergamon Press, OxfordGoogle Scholar
  41. Wellauer EJ, Seireg A (1960) Bending strength of the gear teeth by cantilever-plate theory. ASME J Eng Ind 82(3):213–220CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of Rome “Tor Vergata”RomeItaly

Personalised recommendations