Advertisement

Pediatric Multiple Sclerosis

  • Massimo Filippi
  • Maria A. Rocca
Chapter
  • 30 Downloads

Abstract

Pediatric multiple sclerosis (MS), defined as MS in patients younger than 18 years, has few unique features, especially in children before the age of 11 years, although many aspects are similar to those described in adult-onset relapsing-remitting (RR) MS patients. The onset is usually with an acquired CNS demyelinating syndrome (ADS). The 2017 McDonald criteria perform well in identifying pediatric patients with MS against those suffering from monophasic demyelination, although special clinical care is needed in patients under 11 years, since the risk of acute disseminated encephalomyelitis is higher in this younger population. Pediatric MS is characterized by a highly active inflammatory demyelinating activity (in terms of relapses and MRI activity), but also by a higher ability to recover from attacks, and to promote repair mechanisms (i.e., remyelination) and neuroplasticity in comparison with patients with an onset of the disease during adulthood. Accordingly, pediatric MS patients take longer time to reach irreversible disability and the secondary progressive stage of the disease, compared to adult-onset MS patients, but they are at risk of becoming disabled in early adulthood, due to their earlier disease onset. Since MS onset in childhood has a negative impact on a developing brain, as evidenced by MRI measures and neuropsychological testing, effective treatments should be started as early as possible. Treatment strategies are similar to those for adult-onset MS patients; however, only some of the currently available drugs have been approved in this MS population and benefits and risks should be carefully weighted.

References

  1. 1.
    Waldman A, Ghezzi A, Bar-Or A, Mikaeloff Y, Tardieu M, Banwell B. Multiple sclerosis in children: an update on clinical diagnosis, therapeutic strategies, and research. Lancet Neurol. 2014;13(9):936–48.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Hintzen RQ, Dale RC, Neuteboom RF, Mar S, Banwell B. Pediatric acquired CNS demyelinating syndromes: features associated with multiple sclerosis. Neurology. 2016;87(9 Suppl 2):S67–73.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Fadda G, Brown RA, Longoni G, Castro DA, O’Mahony J, Verhey LH, et al. MRI and laboratory features and the performance of international criteria in the diagnosis of multiple sclerosis in children and adolescents: a prospective cohort study. Lancet Child Adolesc Health. 2018;2(3):191–204.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Banwell B, Arnold DL, Tillema JM, Rocca MA, Filippi M, Weinstock-Guttman B, et al. MRI in the evaluation of pediatric multiple sclerosis. Neurology. 2016;87(9 Suppl 2):S88–96.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Waldman A, Ness J, Pohl D, Simone IL, Anlar B, Amato MP, et al. Pediatric multiple sclerosis: clinical features and outcome. Neurology. 2016;87(9 Suppl 2):S74–81.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Renoux C. Natural history of multiple sclerosis with childhood onset. N Engl J Med. 2007;356:2603–13.  https://doi.org/10.1056/NEJMoa067597.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Harding KE, Liang K, Cossburn MD, Ingram G, Hirst CL, Pickersgill TP, et al. Long-term outcome of paediatric-onset multiple sclerosis: a population-based study. J Neurol Neurosurg Psychiatry. 2013;84(2):141–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Rocca MA, Sonkin M, Copetti M, Pagani E, Arnold DL, Narayanan S, et al. Diffusion tensor magnetic resonance imaging in very early onset pediatric multiple sclerosis. Mult Scler. 2016;22(5):620–7.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    De Meo E, Meani A, Moiola L, Ghezzi A, Veggiotti P, Filippi M, et al. Dynamic gray matter volume changes in pediatric multiple sclerosis: a 3.5 year MRI study. Neurology. 2019;92(15):e1709–23.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    De Meo E, Moiola L, Ghezzi A, Veggiotti P, Capra R, Amato MP, et al. MRI substrates of sustained attention system and cognitive impairment in pediatric MS patients. Neurology. 2017;89(12):1265–73.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Rocca MA, De Meo E, Amato MP, Copetti M, Moiola L, Ghezzi A, et al. Cognitive impairment in paediatric multiple sclerosis patients is not related to cortical lesions. Mult Scler. 2015;21(7):956–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Amato MP, Krupp LB, Charvet LE, Penner I, Till C. Pediatric multiple sclerosis: cognition and mood. Neurology. 2016;87(9 Suppl 2):S82–7.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Krysko KM, O’Connor P. Quality of life, cognition and mood in adults with pediatric multiple sclerosis. Can J Neurol Sci. 2016;43(3):368–74.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    O'Mahony J, Marrie RA, Laporte A, Bar-Or A, Yeh EA, Brown A, et al. Pediatric-onset multiple sclerosis is associated with reduced parental health-related quality of life and family functioning. Mult Scler. 2019;25(12):1661–72.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Langer-Gould A, Zhang JL, Chung J, Yeung Y, Waubant E, Yao J. Incidence of acquired CNS demyelinating syndromes in a multiethnic cohort of children. Neurology. 2011;77(12):1143–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ketelslegers IA, Catsman-Berrevoets CE, Neuteboom RF, Boon M, van Dijk KG, Eikelenboom MJ, et al. Incidence of acquired demyelinating syndromes of the CNS in Dutch children: a nationwide study. J Neurol. 2012;259(9):1929–35.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Reinhardt K, Weiss S, Rosenbauer J, Gartner J, von Kries R. Multiple sclerosis in children and adolescents: incidence and clinical picture—new insights from the nationwide German surveillance (2009-2011). Eur J Neurol. 2014;21(4):654–9.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Dell’Avvento S, Sotgiu MA, Manca S, Sotgiu G, Sotgiu S. Epidemiology of multiple sclerosis in the pediatric population of Sardinia, Italy. Eur J Pediatr. 2016;175(1):19–29.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Achiron A, Garty BZ, Menascu S, Magalashvili D, Dolev M, Ben-Zeev B, et al. Multiple sclerosis in Israeli children: incidence, an clinical, cerebrospinal fluid and magnetic resonance imaging findings. Isr Med Assoc J. 2012;14(4):234–9.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Otallah S, Banwell B. Pediatric multiple sclerosis: an update. Curr Neurol Neurosci Rep. 2018;18(11):76.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Marrie RA, O’Mahony J, Maxwell C, Ling V, Yeh EA, Arnold DL, et al. Incidence and prevalence of MS in children: a population-based study in Ontario, Canada. Neurology. 2018;91(17):e1579–90.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Chitnis T, Glanz B, Jaffin S, Healy B. Demographics of pediatric-onset multiple sclerosis in an MS center population from the Northeastern United States. Mult Scler. 2009;15(5):627–31.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Huppke B, Ellenberger D, Rosewich H, Friede T, Gartner J, Huppke P. Clinical presentation of pediatric multiple sclerosis before puberty. Eur J Neurol. 2014;21(3):441–6.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Waubant E, Ponsonby AL, Pugliatti M, Hanwell H, Mowry EM, Hintzen RQ. Environmental and genetic factors in pediatric inflammatory demyelinating diseases. Neurology. 2016;87(9 Suppl 2):S20–7.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Sawcer S, Franklin RJ, Ban M. Multiple sclerosis genetics. Lancet Neurol. 2014;13(7):700–9.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Disanto G, Magalhaes S, Handel AE, Morrison KM, Sadovnick AD, Ebers GC, et al. HLA-DRB1 confers increased risk of pediatric-onset MS in children with acquired demyelination. Neurology. 2011;76(9):781–6.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Waubant E, Mowry EM, Krupp L, Chitnis T, Yeh EA, Kuntz N, et al. Common viruses associated with lower pediatric multiple sclerosis risk. Neurology. 2011;76(23):1989–95.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    van Pelt ED, Mescheriakova JY, Makhani N, Ketelslegers IA, Neuteboom RF, Kundu S, et al. Risk genes associated with pediatric-onset MS but not with monophasic acquired CNS demyelination. Neurology. 2013;81(23):1996–2001.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Kennedy J, O’Connor P, Sadovnick AD, Perara M, Yee I, Banwell B. Age at onset of multiple sclerosis may be influenced by place of residence during childhood rather than ancestry. Neuroepidemiology. 2006;26(3):162–7.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Waubant E, Mowry EM, Krupp L, Chitnis T, Yeh EA, Kuntz N, et al. Antibody response to common viruses and human leukocyte antigen-DRB1 in pediatric multiple sclerosis. Mult Scler. 2013;19(7):891–5.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Leibovitch EC, Lin CM, Billioux BJ, Graves J, Waubant E, Jacobson S. Prevalence of salivary human herpesviruses in pediatric multiple sclerosis cases and controls. Mult Scler. 2019;25(5):644–52.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Banwell B, Krupp L, Kennedy J, Tellier R, Tenembaum S, Ness J, et al. Clinical features and viral serologies in children with multiple sclerosis: a multinational observational study. Lancet Neurol. 2007;6(9):773–81.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Mikaeloff Y, Caridade G, Tardieu M, Suissa S, KIDSEP Study Group. Parental smoking at home and the risk of childhood-onset multiple sclerosis in children. Brain. 2007;130(Pt 10):2589–95.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Lavery AM, Collins BN, Waldman AT, Hart CN, Bar-Or A, Marrie RA, et al. The contribution of secondhand tobacco smoke exposure to pediatric multiple sclerosis risk. Mult Scler. 2019;25(4):515–22.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Wilejto M, Shroff M, Buncic JR, Kennedy J, Goia C, Banwell B. The clinical features, MRI findings, and outcome of optic neuritis in children. Neurology. 2006;67(2):258–62.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Banwell B, Bar-Or A, Arnold DL, Sadovnick D, Narayanan S, McGowan M, et al. Clinical, environmental, and genetic determinants of multiple sclerosis in children with acute demyelination: a prospective national cohort study. Lancet Neurol. 2011;10(5):436–45.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Gianfrancesco MA, Stridh P, Rhead B, Shao X, Xu E, Graves JS, et al. Evidence for a causal relationship between low vitamin D, high BMI, and pediatric-onset MS. Neurology. 2017;88(17):1623–9.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Ahn JJ, O’Mahony J, Moshkova M, Hanwell HE, Singh H, Zhang MA, et al. Puberty in females enhances the risk of an outcome of multiple sclerosis in children and the development of central nervous system autoimmunity in mice. Mult Scler. 2015;21(6):735–48.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Graves JS, Chitnis T, Weinstock-Guttman B, Rubin J, Zelikovitch AS, Nourbakhsh B, et al. Maternal and perinatal exposures are associated with risk for pediatric-onset multiple sclerosis. Pediatrics. 2017;139(4):e20162838.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Nielsen NM, Munger KL, Koch-Henriksen N, Hougaard DM, Magyari M, Jorgensen KT, et al. Neonatal vitamin D status and risk of multiple sclerosis: a population-based case-control study. Neurology. 2017;88(1):44–51.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    VanLandingham M, Hanigan W, Vedanarayanan V, Fratkin J. An uncommon illness with a rare presentation: neurosurgical management of ADEM with tumefactive demyelination in children. Childs Nerv Syst. 2010;26(5):655–61.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Pfeifenbring S, Bunyan RF, Metz I, Rover C, Huppke P, Gartner J, et al. Extensive acute axonal damage in pediatric multiple sclerosis lesions. Ann Neurol. 2015;77(4):655–67.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Banwell B, Bar-Or A, Cheung R, Kennedy J, Krupp LB, Becker DJ, et al. Abnormal T-cell reactivities in childhood inflammatory demyelinating disease and type 1 diabetes. Ann Neurol. 2008;63(1):98–111.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Correale J, Tenembaum SN. Myelin basic protein and myelin oligodendrocyte glycoprotein T-cell repertoire in childhood and juvenile multiple sclerosis. Mult Scler. 2006;12(4):412–20.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Dhaunchak AS, Becker C, Schulman H, De Faria O Jr, Rajasekharan S, Banwell B, et al. Implication of perturbed axoglial apparatus in early pediatric multiple sclerosis. Ann Neurol. 2012 May;71(5):601–13.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Balint B, Haas J, Schwarz A, Jarius S, Furwentsches A, Engelhardt K, et al. T-cell homeostasis in pediatric multiple sclerosis: old cells in young patients. Neurology. 2013;81(9):784–92.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Vargas-Lowy D, Kivisakk P, Gandhi R, Raddassi K, Soltany P, Gorman MP, et al. Increased Th17 response to myelin peptides in pediatric MS. Clin Immunol. 2013;146(3):176–84.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Mexhitaj I, Nyirenda MH, Li R, O’Mahony J, Rezk A, Rozenberg A, et al. Abnormal effector and regulatory T cell subsets in paediatric-onset multiple sclerosis. Brain. 2019;142(3):617–32.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Schwarz A, Balint B, Korporal-Kuhnke M, Jarius S, von Engelhardt K, Furwentsches A, et al. B-cell populations discriminate between pediatric- and adult-onset multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2017;4(1):e309.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Banwell BL. Pediatric multiple sclerosis. Handb Clin Neurol. 2013;112:1263–74.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Francois G, Duclos P, Margolis H, Lavanchy D, Siegrist CA, Meheus A, et al. Vaccine safety controversies and the future of vaccination programs. Pediatr Infect Dis J. 2005;24(11):953–61.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Aubert-Broche B, Weier K, Longoni G, Fonov VS, Bar-Or A, Marrie RA, et al. Monophasic demyelination reduces brain growth in children. Neurology. 2017;88(18):1744–50.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Peche SS, Alshekhlee A, Kelly J, Lenox J, Mar S. A long-term follow-up study using IPMSSG criteria in children with CNS demyelination. Pediatr Neurol. 2013;49(5):329–34.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Tantsis EM, Prelog K, Brilot F, Dale RC. Risk of multiple sclerosis after a first demyelinating syndrome in an Australian Paediatric cohort: clinical, radiological features and application of the McDonald 2010 MRI criteria. Mult Scler. 2013;19(13):1749–59.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Neuteboom RF, Boon M, Catsman Berrevoets CE, Vles JS, Gooskens RH, Stroink H, et al. Prognostic factors after a first attack of inflammatory CNS demyelination in children. Neurology. 2008;71(13):967–73.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Pohl D, Alper G, Van Haren K, Kornberg AJ, Lucchinetti CF, Tenembaum S, et al. Acute disseminated encephalomyelitis: updates on an inflammatory CNS syndrome. Neurology. 2016;87(9 Suppl 2):S38–45.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Gorman MP, Healy BC, Polgar-Turcsanyi M, Chitnis T. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch Neurol. 2009;66(1):54–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Pohl D, Rostasy K, Gartner J, Hanefeld F. Treatment of early onset multiple sclerosis with subcutaneous interferon beta-1a. Neurology. 2005;64(5):888–90.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Benson LA, Healy BC, Gorman MP, Baruch NF, Gholipour T, Musallam A, et al. Elevated relapse rates in pediatric compared to adult MS persist for at least 6 years. Mult Scler Relat Disord. 2014;3(2):186–93.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Chitnis T, Tardieu M, Amato MP, Banwell B, Bar-Or A, Ghezzi A, et al. International Pediatric MS Study Group Clinical Trials Summit: meeting report. Neurology. 2013;80(12):1161–8.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mikaeloff Y, Caridade G, Assi S, Suissa S, Tardieu M. Prognostic factors for early severity in a childhood multiple sclerosis cohort. Pediatrics. 2006;118(3):1133–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Amato MP, Goretti B, Ghezzi A, Lori S, Zipoli V, Moiola L, et al. Cognitive and psychosocial features in childhood and juvenile MS: two-year follow-up. Neurology. 2010;75(13):1134–40.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    McKay KA, Manouchehrinia A, Berrigan L, Fisk JD, Olsson T, Hillert J. Long-term cognitive outcomes in patients with pediatric-onset vs adult-onset multiple sclerosis. JAMA Neurol. 2019. Epub ahead of print Jun 17.  https://doi.org/10.1001/jamaneurol.2019.1546.
  64. 64.
    Banwell BL, Anderson PE. The cognitive burden of multiple sclerosis in children. Neurology. 2005;64(5):891–4.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Amato MP, Goretti B, Ghezzi A, Lori S, Zipoli V, Portaccio E, et al. Cognitive and psychosocial features of childhood and juvenile MS. Neurology. 2008;70(20):1891–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    MacAllister WS, Belman AL, Milazzo M, Weisbrot DM, Christodoulou C, Scherl WF, et al. Cognitive functioning in children and adolescents with multiple sclerosis. Neurology. 2005;64(8):1422–5.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Lee JY, Chitnis T. Pediatric multiple sclerosis. Semin Neurol. 2016;36(2):148–53.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
  69. 69.
    Amato MP, Goretti B, Ghezzi A, Hakiki B, Niccolai C, Lori S, et al. Neuropsychological features in childhood and juvenile multiple sclerosis: five-year follow-up. Neurology. 2014;83(16):1432–8.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Weisbrot D, Charvet L, Serafin D, Milazzo M, Preston T, Cleary R, et al. Psychiatric diagnoses and cognitive impairment in pediatric multiple sclerosis. Mult Scler. 2014;20(5):588–93.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Filippi M, Bar-Or A, Piehl F, Preziosa P, Solari A, Vukusic S, et al. Multiple sclerosis. Nat Rev Dis Primers. 2018;4(1):43.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Filippi M, Preziosa P, Banwell BL, Barkhof F, Ciccarelli O, De Stefano N, et al. Assessment of lesions on magnetic resonance imaging in multiple sclerosis: practical guidelines. Brain. 2019;142(7):1858–75.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Waubant E, Chabas D, Okuda DT, Glenn O, Mowry E, Henry RG, et al. Difference in disease burden and activity in pediatric patients on brain magnetic resonance imaging at time of multiple sclerosis onset vs adults. Arch Neurol. 2009;66(8):967–71.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Chabas D, Castillo-Trivino T, Mowry EM, Strober JB, Glenn OA, Waubant E. Vanishing MS T2-bright lesions before puberty: a distinct MRI phenotype? Neurology. 2008;71(14):1090–3.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Jarius S, Haas J, Paul F, Wildemann B. Myelinoclastic diffuse sclerosis (Schilder's disease) is immunologically distinct from multiple sclerosis: results from retrospective analysis of 92 lumbar punctures. J Neuroinflammation. 2019;16(1):51.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Chabas D, Ness J, Belman A, Yeh EA, Kuntz N, Gorman MP, et al. Younger children with MS have a distinct CSF inflammatory profile at disease onset. Neurology. 2010;74(5):399–405.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Pohl D, Rostasy K, Reiber H, Hanefeld F. CSF characteristics in early-onset multiple sclerosis. Neurology. 2004;63(10):1966–7.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Hacohen Y, Mankad K, Chong WK, Barkhof F, Vincent A, Lim M, et al. Diagnostic algorithm for relapsing acquired demyelinating syndromes in children. Neurology. 2017;89(3):269–78.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Hacohen Y, Absoud M, Deiva K, Hemingway C, Nytrova P, Woodhall M, et al. Myelin oligodendrocyte glycoprotein antibodies are associated with a non-MS course in children. Neurol Neuroimmunol Neuroinflamm. 2015;2(2):e81.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Hennes EM, Baumann M, Schanda K, Anlar B, Bajer-Kornek B, Blaschek A, et al. Prognostic relevance of MOG antibodies in children with an acquired demyelinating syndrome. Neurology. 2017;89(9):900–8.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Pohl D, Rostasy K, Treiber-Held S, Brockmann K, Gärtner J, Hanefeld F. Pediatric multiple sclerosis: detection of clinically silent lesions by multimodal evoked potentials. J Pediatrics. 2006;149(1):125–7.CrossRefGoogle Scholar
  82. 82.
    Waldman AT, Liu GT, Lavery AM, Liu G, Gaetz W, Aleman TS, et al. Optical coherence tomography and visual evoked potentials in pediatric MS. Neurol Neuroimmunol Neuroinflamm. 2017;4(4):e356.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Mikaeloff Y, Adamsbaum C, Husson B, Vallee L, Ponsot G, Confavreux C, et al. MRI prognostic factors for relapse after acute CNS inflammatory demyelination in childhood. Brain. 2004;127(Pt 9):1942–7.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Callen DJ, Shroff MM, Branson HM, Li DK, Lotze T, Stephens D, et al. Role of MRI in the differentiation of ADEM from MS in children. Neurology. 2009;72(11):968–73.CrossRefGoogle Scholar
  85. 85.
    Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol. 2011;69(2):292–302.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Verhey LH, Branson HM, Shroff MM, Callen DJ, Sled JG, Narayanan S, et al. MRI parameters for prediction of multiple sclerosis diagnosis in children with acute CNS demyelination: a prospective national cohort study. Lancet Neurol. 2011;10(12):1065–73.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Thompson AJ, Banwell BL, Barkhof F, Carroll WM, Coetzee T, Comi G, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162–73.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Absoud M, Cummins C, Desai N, Gika A, McSweeney N, Munot P, et al. Childhood optic neuritis clinical features and outcome. Arch Dis Child. 2011;96(9):860–2.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Ashrafi MR, Tavasoli AR. Childhood leukodystrophies: a literature review of updates on new definitions, classification, diagnostic approach and management. Brain Dev. 2017;39(5):369–85.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol. 2017;134(3):351–82.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Wolf NI, Toro C, Kister I, Latif KA, Leventer R, Pizzino A, et al. DARS-associated leukoencephalopathy can mimic a steroid-responsive neuroinflammatory disorder. Neurology. 2015;84(3):226–30.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Schiffmann R, Elroy-Stein O. Childhood ataxia with CNS hypomyelination/vanishing white matter disease—a common leukodystrophy caused by abnormal control of protein synthesis. Mol Genet Metab. 2006;88(1):7–15.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Rodriguez-Fernandez C, Lopez-Marin L, Lopez-Pino MA, Gutierrez-Solana LG, Soto-Insuga V, Conejo-Moreno D. [Analysis of a series of cases with an initial diagnosis of acute disseminated encephalomyelitis over the period 2000-2010]. Rev Neurol. 2013;57(7):297–305.Google Scholar
  94. 94.
    Mesaros S, Rocca MA, Absinta M, Ghezzi A, Milani N, Moiola L, et al. Evidence of thalamic gray matter loss in pediatric multiple sclerosis. Neurology. 2008;70(13 Pt 2):1107–12.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Mezzapesa DM, Rocca MA, Falini A, Rodegher ME, Ghezzi A, Comi G, et al. A preliminary diffusion tensor and magnetization transfer magnetic resonance imaging study of early-onset multiple sclerosis. Arch Neurol. 2004;61(3):366–8.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Rocca MA, Absinta M, Amato MP, Moiola L, Ghezzi A, Veggiotti P, et al. Posterior brain damage and cognitive impairment in pediatric multiple sclerosis. Neurology. 2014;82(15):1314–21.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Khalil M, Teunissen CE, Otto M, Piehl F, Sormani MP, Gattringer T, et al. Neurofilaments as biomarkers in neurological disorders. Nat Rev Neurol. 2018;14(10):577–89.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Wong YYM, Bruijstens AL, Barro C, Michalak Z, Melief MJ, Wierenga AF, et al. Serum neurofilament light chain in pediatric MS and other acquired demyelinating syndromes. Neurology. 2019;93(10):e968–74.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Allen DB. Growth suppression by glucocorticoid therapy. Endocrinol Metab Clin North Am. 1996;25(3):699–717.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Chitnis T, Arnold DL, Banwell B, Bruck W, Ghezzi A, Giovannoni G, et al. Trial of fingolimod versus interferon beta-1a in pediatric multiple sclerosis. N Engl J Med. 2018;379(11):1017–27.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Alroughani R, Das R, Penner N, Pultz J, Taylor C, Eraly S. Safety and efficacy of delayed-release dimethyl fumarate in pediatric patients with relapsing multiple sclerosis (FOCUS). Pediatr Neurol. 2018;83:19–24.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Chitnis T, Tenembaum S, Banwell B, Krupp L, Pohl D, Rostasy K, et al. Consensus statement: evaluation of new and existing therapeutics for pediatric multiple sclerosis. Mult Scler. 2012;18(1):116–27.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Ghezzi A, Banwell B, Boyko A, Amato MP, Anlar B, Blinkenberg M, et al. Meeting review: the management of multiple sclerosis in children: a European view. Mult Scler. 2010;16(10):1258–67.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Baroncini D, Zaffaroni M, Moiola L, Lorefice L, Fenu G, Iaffaldano P, et al. Long-term follow-up of pediatric MS patients starting treatment with injectable first-line agents: a multicentre, Italian, retrospective, observational study. Mult Scler. 2019;25(3):399–407.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Ghezzi A, Amato MP, Makhani N, Shreiner T, Gartner J, Tenembaum S. Pediatric multiple sclerosis: conventional first-line treatment and general management. Neurology. 2016;87(9 Suppl 2):S97–S102.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Banwell B, Reder AT, Krupp L, Tenembaum S, Eraksoy M, Alexey B, et al. Safety and tolerability of interferon beta-1b in pediatric multiple sclerosis. Neurology. 2006;66(4):472–6.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Ghezzi A, Amato M, Annovazzi P, Capobianco M, Gallo P, La Mantia L, et al. Long-term results of immunomodulatory treatment in children and adolescents with multiple sclerosis: the Italian experience. Neurol Sci. 2009;30(3):193–9.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Mikaeloff Y, Moreau T, Debouverie M, Pelletier J, Lebrun C, Gout O, et al. Interferon-β treatment in patients with childhood-onset multiple sclerosis. J Pediatrics. 2001;139(3):443–6.CrossRefGoogle Scholar
  109. 109.
    Tenembaum SN, Segura MJ. Interferon beta-1a treatment in childhood and juvenile-onset multiple sclerosis. Neurology. 2006;67(3):511–3.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Waubant E, Hietpas J, Stewart T, Dyme Z, Herbert J, Lacy J, et al. Interferon beta-1a in children with multiple sclerosis is well tolerated. Neuropediatrics. 2001;32(4):211–3.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Kornek B, Bernert G, Balassy C, Geldner J, Prayer D, Feucht M. Glatiramer acetate treatment in patients with childhood and juvenile onset multiple sclerosis. Neuropediatrics. 2003;34(3):120–6.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Ghezzi A, Amato MP, Capobianco M, Gallo P, Marrosu G, Martinelli V, et al. Disease-modifying drugs in childhood-juvenile multiple sclerosis: results of an Italian co-operative study. Mult Scler. 2005;11(4):420–4.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Bergamaschi R, Rezzani C, Minguzzi S, Amato MP, Patti F, Marrosu MG, et al. Validation of the DYMUS questionnaire for the assessment of dysphagia in multiple sclerosis. Funct Neurol. 2009;24(3):159–62.PubMedPubMedCentralGoogle Scholar
  114. 114.
    Tenembaum SN, Banwell B, Pohl D, Krupp LB, Boyko A, Meinel M, et al. Subcutaneous interferon beta-1a in pediatric multiple sclerosis: a retrospective study. J Child Neurol. 2013;28(7):849–56.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Chitnis T, Ghezzi A, Bajer-Kornek B, Boyko A, Giovannoni G, Pohl D. Pediatric multiple sclerosis: escalation and emerging treatments. Neurology. 2016;87(9 Suppl 2):S103–9.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Yeh EA, Waubant E, Krupp LB, Ness J, Chitnis T, Kuntz N, et al. Multiple sclerosis therapies in pediatric patients with refractory multiple sclerosis. Arch Neurol. 2011;68(4):437–44.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Thannhauser JE, Mah JK, Metz LM. Adherence of adolescents to multiple sclerosis disease-modifying therapy. Pediatr Neurol. 2009;41(2):119–23.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Waubant E, Banwell B, Wassmer E, Sormani MP, Amato MP, Hintzen R, et al. Clinical trials of disease-modifying agents in pediatric MS: opportunities, challenges, and recommendations from the IPMSSG. Neurology. 2019;92(22):e2538–49.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Lulu S, Julian L, Shapiro E, Hudson K, Waubant E. Treatment adherence and transitioning youth in pediatric multiple sclerosis. Mult Scler Relat Disord. 2014;3(6):689–95.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Ghezzi A, Moiola L, Pozzilli C, Brescia-Morra V, Gallo P, Grimaldi LM, et al. Natalizumab in the pediatric MS population: results of the Italian registry. BMC Neurol. 2015;15:174.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Bozic C, Richman S, Plavina T, Natarajan A, Scanlon JV, Subramanyam M, et al. Anti-John Cunnigham virus antibody prevalence in multiple sclerosis patients: baseline results of STRATIFY-1. Ann Neurol. 2011;70(5):742–50.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Huppke P, Huppke B, Ellenberger D, Rostasy K, Hummel H, Stark W, et al. Therapy of highly active pediatric multiple sclerosis. Mult Scler. 2019;25(1):72–80.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Makhani N. Cyclophosphamide therapy in pediatric multiple sclerosis. Neurology. 2009;72:2076–82.  https://doi.org/10.1212/WNL.0b013e3181a8164c.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Ginsberg JP. An experimental protocol for fertility preservation in prepubertal boys recently diagnosed with cancer: a report of acceptability and safety. Hum Reprod. 2010;25:37–41.  https://doi.org/10.1093/humrep/dep371.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Hauser SL, Waubant E, Arnold DL, Vollmer T, Antel J, Fox RJ, et al. B-cell depletion with rituximab in relapsing-remitting multiple sclerosis. N Engl J Med. 2008;358(7):676–88.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Beres SJ, Graves J, Waubant E. Rituximab use in pediatric central demyelinating disease. Pediatr Neurol. 2014;51(1):114–8.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Mowry EM, Krupp LB, Milazzo M, Chabas D, Strober JB, Belman AL, et al. Vitamin D status is associated with relapse rate in pediatric-onset multiple sclerosis. Ann Neurol. 2010;67(5):618–24.PubMedPubMedCentralGoogle Scholar
  128. 128.
    Krupp LB, Rintell D, Charvet LE, Milazzo M, Wassmer E. Pediatric multiple sclerosis: perspectives from adolescents and their families. Neurology. 2016;87(9 Suppl 2):S4–7.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Massimo Filippi
    • 1
    • 2
    • 3
    • 4
  • Maria A. Rocca
    • 2
  1. 1.Neurology UnitIRCCS San Raffaele Scientific InstituteMilanoItaly
  2. 2.Neuroimaging Research UnitIRCCS San Raffaele Scientific InstituteMilanoItaly
  3. 3.Neurophysiology UnitIRCCS San Raffaele Scientific InstituteMilanoItaly
  4. 4.Vita-Salute San Raffaele UniversityMilanoItaly

Personalised recommendations