Advertisement

Generators of Fuzzy Logical Operations

  • Mirko NavaraEmail author
  • Milan Petrík
Chapter
  • 9 Downloads
Part of the Studies in Computational Intelligence book series (SCI, volume 878)

Abstract

We deal with fuzzy logical operations with values in the real unit interval. Many of them can be considered equivalent up to an isomorphism (i.e., increasing bijection) of the set of values. This is the case of all involutive fuzzy negations; an elegant proof was given by Nguyen and Walker (A first course in fuzzy logic, 2nd edn. Chapman & Hall/CRC, Boca Raton, 2000 [23]) . The situation is more tricky for binary operations, triangular norms, triangular conorms, and fuzzy implications. For the most common classes of these operations, the existence of their (additive or multiplicative) generators is known; however, their computation can be often unfeasible. We proved that a rather general subclass allows computing the generators from partial derivatives. Here we summarize preceding results in this direction (mostly with simplified proofs) and add several new ones.

Keywords

Additive generator Archimedean triangular conorm Archimedean triangular norm Fuzzy conjunction Fuzzy disjunction Fuzzy logic Fuzzy negation Fuzzy R-implication Fuzzy S-implication Generator Multiplicative generator 

Notes

Acknowledgements

The work was supported by the European Regional Development Fund, project “Center for Advanced Applied Science” (No. CZ.02.1.01/0.0/0.0/16_019/0000778).

References

  1. 1.
    Abel, N.: Untersuchungen der Funktionen zweier unabhängigen veränderlichen Grössen \(x\) und \(y\) wie \(f\left( x, y\right) \), welche die Eigenschaft von \(x\), \(y\) und \(z\) ist. J. Für Die Reine Und Angew. Math. 1, 11–15 (1826)Google Scholar
  2. 2.
    Aczél, J.: Sur les opérations définies pour des nombres réels. Bull. Société Mathématique Fr. 76, 59–64 (1949)zbMATHGoogle Scholar
  3. 3.
    Alsina, C.: On a method of Pi-Calleja for describing additive generators of associative functions. Aequationes Math. 43, 14–20 (1992)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Alsina, C., Frank, M.J., Schweizer, B.: Associative Functions: Triangular Norms and Copulas. World Scientific, Singapore (2006)CrossRefGoogle Scholar
  5. 5.
    Baczyński, M., Jayaram, B.: Fuzzy implications. In: Studies in Fuzziness and Soft Computing, vol. 231. Springer, Berlin (2008)Google Scholar
  6. 6.
    Baczyński, M., Jayaram, B.: (S, N)- and R-implications: a state-of-the-art survey. Fuzzy Sets Syst. 159, 1836–1859 (2008)Google Scholar
  7. 7.
    Bustince, H., Burillo, P., Soria, F.: Automorphisms, negations and implication operators. Fuzzy Sets Syst. 134(2), 209–229 (2003)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Clara, N.: Analysis of the law of non-contradiction using additive generators. In: 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Guilin, China, 1099–1106 (2017)Google Scholar
  9. 9.
    Craigen, R., Páles, Z.: The associativity equation revisited. Aequationes Math. 37, 306–312 (1989)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dombi, J.: A general class of fuzzy operators, the De Morgan class of fuzzy operators and fuzziness measures induced by fuzzy operators. Fuzzy Sets Syst. 8, 149–163 (1982)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ghiselli Ricci, R., Navara, M.: Convexity conditions on t-norms and their additive generators. Fuzzy Sets Syst. 151, 353–361 (2005).  https://doi.org/10.1016/j.fss.2004.05.005
  12. 12.
    Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)CrossRefGoogle Scholar
  13. 13.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Trends in Logic, vol. 8. Kluwer Academic Publishers, Dordrecht, Netherlands (2000)Google Scholar
  14. 14.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular norms: some open questions. In: Proceeding Linz Seminar 2003, Johannes Kepler University Linz, Austria, 135–138 (2003)Google Scholar
  15. 15.
    Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic, Theory and Applications. Prentice-Hall (1995)Google Scholar
  16. 16.
    Ling, C.M.: Representation of associative functions. Publ. Math. Debr. 12, 189–212 (1965)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Massanet, S., Torrens, J.: A new method of generating fuzzy implications from given ones. EUSFLAT-LFA, Aix-les-Bains. France 215–222 (2011)Google Scholar
  18. 18.
    Mostert, P.S., Shields, A.L.: On the structure of semi-groups on a compact manifold with boundary. Ann. of Math., II. Ser. 65, 117–143 (1957)Google Scholar
  19. 19.
    Navara, M., Petrík, M.: Two methods of reconstruction of generators of continuous t-norms. 12th International Conference Information Processing and Management of Uncertainty in Knowledge-Based Systems, pp. 1016–1021. Málaga, Spain (2008)Google Scholar
  20. 20.
    Navara, M., Petrík, M., Sarkoci, P.: Explicit formulas for generators of triangular norms. Publ. Math. Debrecen 77, 171–191 (2010)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Navara, M.: Convex combinations of fuzzy logical operations. Fuzzy Sets Syst. 264, 51–63 (2015).  https://doi.org/10.1016/j.fss.2014.10.013MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Navara, M.: Formulas for generators of R-implications. Fuzzy Sets Syst. 359, 80–89 (2019).  https://doi.org/10.1016/j.fss.2018.09.011
  23. 23.
    Nguyen, H.T., Walker, E.: A First Course in Fuzzy Logic, 2nd edn. Chapman & Hall/CRC, Boca Raton (2000)Google Scholar
  24. 24.
    Petrík, M.: Convex combinations of strict t-norms. Soft Computing - A Fusion of Foundations, Methodol. Appl. 14(10), 1053–1057 (August 2010).  https://doi.org/10.1007/s00500-009-0484-3
  25. 25.
    Pi-Calleja, P.: Las ecuacionas funcionales de la teoría de magnitudes. In: Segundo Symposium de Matemática, Villavicencio, Mendoza, 199–280. Coni, Buenos Aires (1954)Google Scholar
  26. 26.
    Qin, F., Baczyński, M., A. Xie: Distributive equation of implications based on continuous triangular norms. EUSFLAT-LFA, Aix-les-Bains. France 246–253 (2011)Google Scholar
  27. 27.
    Schweizer, B., Sklar, A.: Probabilistic Metric Spaces, 2nd edn (2006). North-Holland, Amsterdam, Dover Publications, Mineola, NY (1983)Google Scholar
  28. 28.
    Takaci, A.: Schur-concave triangular norms: characterization and application in pFCSP. Fuzzy Sets Syst. 155, 50–64 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Tomás, M.S.: Sobre algunas medias de funciones asociativas. Stochastica 11(1), 25–34 (1987)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Machine Perception, Department of Cybernetics, Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic
  2. 2.Department of Mathematics, Faculty of EngineeringCzech University of Life SciencesPragueCzech Republic

Personalised recommendations