Least Square Approximations and Linear Values of Cooperative Games

  • Ulrich Faigle
  • Michel GrabischEmail author
Part of the Studies in Computational Intelligence book series (SCI, volume 878)


Many important values for cooperative games are known to arise from least square optimization problems. The present investigation develops an optimization framework to explain and clarify this phenomenon in a general setting. The main result shows that every linear value results from some least square approximation problem and that, conversely, every least square approximation problem with linear constraints yields a linear value. This approach includes and extends previous results on so-called least square values and semivalues in the literature. In particular, it is demonstrated how known explicit formulas for solutions under additional assumptions easily follow from the general results presented here.


  1. 1.
    Banzhaf, J.F.: Weighted voting does not work: a mathematical analysis. Rutgers Law Rev. 19, 317–343 (1965)Google Scholar
  2. 2.
    Charnes, A., Golany, B., Keane, M., Rousseau, J.: Extremal principle solutions of games in characteristic function form: core, Chebychev and Shapley value generalizations. In: Sengupta, J.K., Kadekodi, G.K. (eds.) Econometrics of Planning and Efficiency, pp. 123–133. Kluwer Academic Publisher (1988)Google Scholar
  3. 3.
    Derks, J., Haller, H., Peters, H.: The selectope for cooperative games. Int. J. Game Theory 29, 23–38 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ding, G., Lax, R., Chen, J., Chen, P., Marx, B.: Transforms of pseudo-Boolean random variables. Discrete Appl. Math. 158, 13–24 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Faigle, U., Kern, W., Still, G.: Algorithmic Principles of Mathematical Programming. Springer, Dordrecht (2002)CrossRefGoogle Scholar
  6. 6.
    Faigle, U., Voss, J.: A system-theoretic model for cooperation, interaction and allocation. Discrete Appl. Math. 159, 1736–1750 (2011)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Grabisch, M.: Set Functions, Games and Capacities in Decision Making. Theory and Decision Library C, vol. 46, Springer (2016)Google Scholar
  8. 8.
    Grabisch, M., Labreuche, C.: Fuzzy measures and integrals in MCDA. In: Figueira, J., Greco, S., Ehrgott, M. (eds.) Multiple Criteria Decision Analysis, pp. 563–608. Kluwer Academic Publishers (2005)Google Scholar
  9. 9.
    Grabisch, M., Marichal, J.-L., Roubens, M.: Equivalent representations of set functions. Math. Oper. Res. 25(2), 157–178 (2000)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Hammer, P.L., Holzman, R.: On approximations of pseudo-Boolean functions. RUTCOR Research Report RRR 29–87. State University of New Jersey (1987)Google Scholar
  11. 11.
    Hammer, P.L., Holzman, R.: On approximations of pseudo-Boolean functions. ZOR—Methods Models Oper. Res. 36, 3–21 (1992)CrossRefGoogle Scholar
  12. 12.
    Hammer, P.L., Rudeanu, S.: Boolean Methods in Operations Research and Related Areas. Springer, Berlin (1968)CrossRefGoogle Scholar
  13. 13.
    Kultti, K., Salonen, H.: Minimum norm solutions for cooperative games. Int. J. Game Theory 35, 591–602 (2007)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Marichal, J.-L., Mathonet, P.: Weighted Banzhaf power and interaction indexes through weighted approximations of games. Eur. J. Oper. Res. 211, 352–358 (2011)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Peleg, B., Sudhölter, P.: Introduction to the Theory of Cooperative Games. Kluwer Academic Publisher (2003)Google Scholar
  16. 16.
    Ruiz, L.M., Valenciano, F., Zarzuelo, J.M.: The family of least-square values for transferable utility games. Games Econ. Behav. 24, 109–130 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Ruiz, L.M., Valenciano, F., Zarzuelo, J.M.: Some new results on least square values for TU games. TOP 6, 139–158 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Schmeidler, D.: Subjective probability and expected utility without additivity. Econometrica 57(3), 571–587 (1989)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Shapley, L.S.: A value for \(n\)-person games. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Vol. II, Number 28 in Annals of Mathematics Studies, pp. 307–317. Princeton University Press (1953)Google Scholar
  20. 20.
    Sun, H., Hao, Z., Xu, G.: Optimal Solutions for TU-Games with Decision Approach. Preprint, Northwestern Polytechnical University, Xi’an, Shaanxi, China (2013)Google Scholar
  21. 21.
    Tanino, T.: One-point solutions obtained from best approximation problems for cooperative games. Kybernetika 49, 395–403 (2013)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Weber, R.J.: Probabilistic values for games. In: Roth, A.E. (ed.) The Shapley Value, pp. 101–120. Cambridge University Press, Cambridge (1988)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Mathematisches InstitutUniversität zu KölnKölnGermany
  2. 2.Paris School of EconomicsUniversity of Paris IParisFrance

Personalised recommendations