Advertisement

Design of Timeline-Based Planning Systems for Safe Human-Robot Collaboration

  • Andrea OrlandiniEmail author
  • Marta Cialdea Mayer
  • Alessandro Umbrico
  • Amedeo Cesta
Chapter

Abstract

During the last decade, industrial collaborative robots have entered assembly cells supporting human workers in repetitive and physical demanding operations. Such human-robot collaboration (HRC) scenarios entail many open issues. The deployment of highly flexible and adaptive plan-based controllers is capable of preserving productivity while enforcing human safety is then a crucial requirement. The deployment of plan-based solutions entails knowledge engineers and roboticists interactions in order to design well-suited models of robotic cells considering both operational and safety requirements. So, the ability of supporting knowledge engineering for integrating high level and low level control (also from non-specialist users) can facilitate deployment of effective and safe solutions in different industrial settings. In this chapter, we will provide an overview of some recent results concerning the development of a task planning and execution technology and its integration with a state of the art Knowledge Engineering environment to deploy safe and effective solutions in realistic manufacturing HRC scenarios. We will briefly present and discuss a HRC use case to demonstrate the effectiveness of such integration discussing its advantages.

Notes

Acknowledgements

Amedeo Cesta, Andrea Orlandini, and Alessandro Umbrico wish to acknowledge the support by the European Commission and the ShareWork project (H2020—Factories of the Future—G.A. nr. 820807).

References

  1. 1.
    Freitag, M., Hildebrandt, T.: Automatic design of scheduling rules for complex manufacturing systems by multi-objective simulation-based optimization. {CIRP} Annals - Manufacturing Technology 65(1) (2016) 433–436Google Scholar
  2. 2.
    Bensalem, S., Havelund, K., Orlandini, A.: Verification and validation meet planning and scheduling. International Journal on Software Tools for Technology Transfer 16(1) (2014) 1–12CrossRefGoogle Scholar
  3. 3.
    La Viola, C., Orlandini, A., Umbrico, A., Cesta, A.: ROS-TiPlEx: How to make experts in A.I. planning and robotics talk together and be happy. In: 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 2019, pp. 1–6. http://dx.doi.org/10.1109/RO-MAN46459.2019.8956417
  4. 4.
    Cesta, A., Cortellessa, G., Fratini, S., Oddi, A.: Developing an End-to-End Planning Application from a Timeline Representation Framework. In: IAAI-09. Proc. of the 21st Innovative Application of Artificial Intelligence Conference, Pasadena, CA, USA. (2009)Google Scholar
  5. 5.
    Maler, O., Pnueli, A., Sifakis, J.: On the Synthesis of Discrete Controllers for Timed Systems. In: STACS. LNCS, Springer (1995) 229–242Google Scholar
  6. 6.
    Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Validation and Verification Issues in a Timeline-Based Planning System. Knowledge Engineering Review 25(3) (2010) 299–318CrossRefGoogle Scholar
  7. 7.
    Orlandini, A., Suriano, M., Cesta, A., Finzi, A.: Controller synthesis for safety critical planning. In: IEEE 25th International Conference on Tools with Artificial Intelligence (ICTAI 2013), IEEE (2013) 306–313Google Scholar
  8. 8.
    Py, F., Rajan, K., McGann, C.: A systematic agent framework for situated autonomous systems. In: AAMAS. (2010) 583–590Google Scholar
  9. 9.
    Lemai, S., Ingrand, F.: Interleaving Temporal Planning and Execution in Robotics Domains. In: AAAI-04. (2004) 617–622Google Scholar
  10. 10.
    Barreiro, J., Boyce, M., Do, M., Frank, J., Iatauro, M., Kichkaylo, T., Morris, P., Ong, J., Remolina, E., Smith, T., Smith, D.: EUROPA: A Platform for AI Planning, Scheduling, Constraint Programming, and Optimization. In: ICKEPS 2012: the 4th Int. Competition on Knowledge Engineering for Planning and Scheduling. (2012)Google Scholar
  11. 11.
    Ghallab, M., Laruelle, H.: Representation and control in IxTeT, a temporal planner. In: 2nd Int. Conf. on Artificial Intelligence Planning and Scheduling (AIPS). (1994) 61–67Google Scholar
  12. 12.
    Morris, P.H., Muscettola, N.: Temporal Dynamic Controllability Revisited. In: Proc. of AAAI 2005. (2005) 1193–1198Google Scholar
  13. 13.
    Cesta, A., Orlandini, A., Bernardi, G., Umbrico, A.: Towards a planning-based framework for symbiotic human-robot collaboration. In: 21th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), IEEE (2016)Google Scholar
  14. 14.
    Umbrico, A., Cesta, A., Cialdea Mayer, M., Orlandini, A.: PLATINUM: A new Framework for Planning and Acting. In: AI*IA 2016 Advances in Artificial Intelligence: XVth International Conference of the Italian Association for Artificial Intelligence, Genova, Italy, November 29 – December 1, 2016, Proceedings, Springer International Publishing (2017) 508–522Google Scholar
  15. 15.
    Umbrico, A., Cesta, A., Cialdea Mayer, M., Orlandini, A.: Integrating resource management and timeline-based planning. In: The 28th International Conference on Automated Planning and Scheduling (ICAPS). (2018)Google Scholar
  16. 16.
    Orlandini, A., Bernardi, G., Cesta, A., Finzi, A.: Planning meets verification and validation in a knowledge engineering environment. Intelligenza Artificiale 8(1) (2014) 87–100CrossRefGoogle Scholar
  17. 17.
    Cesta, A., Cortellessa, G., Fratini, S., Oddi, A., Policella, N.: An Innovative Product for Space Mission Planning: An A Posteriori Evaluation. In: ICAPS. (2007) 57–64Google Scholar
  18. 18.
    Jonsson, A., Morris, P., Muscettola, N., Rajan, K., Smith, B.: Planning in Interplanetary Space: Theory and Practice. In: AIPS-00. Proceedings of the Fifth Int. Conf. on AI Planning and Scheduling. (2000)Google Scholar
  19. 19.
    Muscettola, N.: HSTS: Integrating Planning and Scheduling. In Zweben, M. and Fox, M.S., ed.: Intelligent Scheduling. Morgan Kauffmann (1994)Google Scholar
  20. 20.
    Vidal, T., Fargier, H.: Handling Contingency in Temporal Constraint Networks: From Consistency To Controllabilities. JETAI 11(1) (1999) 23–45zbMATHGoogle Scholar
  21. 21.
    Cialdea Mayer, M., Orlandini, A., Umbrico, A.: Planning and execution with flexible timelines: a formal account. Acta Informatica 53(6–8) (2016) 649–680MathSciNetCrossRefGoogle Scholar
  22. 22.
    Allen, J.F.: Maintaining knowledge about temporal intervals. Commun. ACM 26(11) (1983) 832–843CrossRefGoogle Scholar
  23. 23.
    Umbrico, A., Cesta, A., Cortellessa, G., Orlandini, A.: A goal triggering mechanism for continuous human-robot interaction. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) 11298 LNAI (2018) 460–473Google Scholar
  24. 24.
    Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Flexible Timeline-Based Plan Verification. In: KI 2009: Advances in Artificial Intelligence. Volume 5803 of LNAI. (2009)Google Scholar
  25. 25.
    Cesta, A., Finzi, A., Fratini, S., Orlandini, A., Tronci, E.: Analyzing Flexible Timeline Plan. In: ECAI 2010. Proceedings of the 19th European Conference on Artificial Intelligence. Volume 215., IOS Press (2010)Google Scholar
  26. 26.
    Orlandini, A., Finzi, A., Cesta, A., Fratini, S.: TGA-based controllers for flexible plan execution. In: KI 2011: Advances in Artificial Intelligence, 34th Annual German Conference on AI. Volume 7006 of Lecture Notes in Computer Science., Springer (2011) 233–245Google Scholar
  27. 27.
    Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K., Lime, D.: UPPAAL-TIGA: Time for playing games! In: Proc. of CAV-07. Number 4590 in LNCS, Springer (2007) 121–125Google Scholar
  28. 28.
    Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. International Journal on Software Tools for Technology Transfer 1(1–2) (1997) 134–152CrossRefGoogle Scholar
  29. 29.
    Marvel, J.A., Falco, J., Marstio, I.: Characterizing task-based human-robot collaboration safety in manufacturing. IEEE Trans. Systems, Man, and Cybernetics: Systems 45(2) (2015) 260–275Google Scholar
  30. 30.
    Helms, E., Schraft, R.D., Hagele, M.: rob@work: Robot assistant in industrial environments. In: Proceedings. 11th IEEE International Workshop on Robot and Human Interactive Communication. (2002) 399–404Google Scholar
  31. 31.
    Maurtua, I., Pedrocchi, N., Orlandini, A., Fernández, J.d.G., Vogel, C., Geenen, A., Althoefer, K., Shafti, A.: Fourbythree: Imagine humans and robots working hand in hand. In: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA). (Sept 2016) 1–8Google Scholar
  32. 32.
    Cesta, A., Orlandini, A., Umbrico, A.: Fostering robust human-robot collaboration through AI task planning. Procedia CIRP 72 (2018) 1045–1050 51st CIRP Conference on Manufacturing Systems.Google Scholar
  33. 33.
    Pellegrinelli, S., Moro, F.L., Pedrocchi, N., Tosatti, L.M., Tolio, T.: A probabilistic approach to workspace sharing for human–robot cooperation in assembly tasks. {CIRP} Annals - Manufacturing Technology 65(1) (2016) 57–60Google Scholar
  34. 34.
    Pellegrinelli, S., Orlandini, A., Pedrocchi, N., Umbrico, A., Tolio, T.: Motion planning and scheduling for human and industrial-robot collaboration. CIRP Annals - Manufacturing Technology 66 (2017) 1–4CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Andrea Orlandini
    • 1
    Email author
  • Marta Cialdea Mayer
    • 2
  • Alessandro Umbrico
    • 1
  • Amedeo Cesta
    • 1
  1. 1.Institute of Cognitive Science and TechnologyCNR – National Research Council of ItalyRomeItaly
  2. 2.Department of EngineeringUniversity “Roma TRE”Rome (RM)Italy

Personalised recommendations