Advertisement

Big Data Application for Security of Renewable Energy Resources

  • Hossein Mohammadi RouzbahaniEmail author
  • Hadis Karimipour
  • Gautam Srivastava
Chapter
  • 48 Downloads

Abstract

Renewable Energy Resources (RES) play a critical role in electrical systems due to continuous demand increases. As a significant application of RES, modern electrical networks are very complex because of communication tools, smart meters, and real-time data processing. These smart tools and ongoing communication generate a high-speed tsunami of data that require novel methods for better performance and decision-making. Even though big data has become an important and useful method for facing the challenges of large volume data, it is a double-edged sword. It brings certain risks to the data as well as the ability of convenience to the network. As such, data involved in these electrical systems become major targets of attacks. As a result, cybersecurity becomes a critical issue. In this chapter, we first provide a brief introduction to using RES in power systems and big data. Then, different aspects of security are summarized in the same context while RES is specifically addressed. Next, we introduce big data and finally, a relation between big data and security aspect of using RES is discussed.

References

  1. 1.
    H.M. Ruzbahani, H. Karimipour, Optimal incentive-based demand response management of smart households, in 2018 IEEE/IAS 54th Industrial and Commercial Power Systems Technical Conference (I&CPS) (2018), pp. 1–7Google Scholar
  2. 2.
    A. Askarzadeh, Solving electrical power system problems by harmony search: a review. Artif. Intell. Rev. 47(2), 217–251 (2017)CrossRefGoogle Scholar
  3. 3.
    M. Henderson, D. Novosel, M.L. Crow, Electric Power Grid Modernization Trends, Challenges, and Opportunities (2017). ieeeorg-stg.ieee.org
  4. 4.
    A. Rahimnejad, H.M. Rouzbahani, H. Karimipour, Smart Households Demand Response Management with Micro Grid. preprint arXiv (2019). arxiv.org, pp. 1–5
  5. 5.
    V. Dinavahi, H. Karimipour, Parallel relaxation-based joint dynamic state estimation of large-scale power systems. IET Gener. Transm. Distrib. 10(2), 452–459 (2016)CrossRefGoogle Scholar
  6. 6.
    F. Kratima, F. Gherbi, F. Lakdja, Applications of cooperative game theory in power system allocation problems. Leonardo J. Sci., 12 (2013). 193.226.7.140 Google Scholar
  7. 7.
    M.J. Estahbanati, Hybrid probabilistic-harmony search algorithm methodology in generation scheduling problem. J. Exp. Theor. Artif. Intell. 26(2), 283–296 (2014)CrossRefGoogle Scholar
  8. 8.
    L. Abdallah, T. El-Shennawy, Reducing Carbon Dioxide Emissions from Electricity Sector Using Smart Electric Grid Applications (2013). hindawi.com
  9. 9.
    H. Karimipour, V. Dinavahi, Extended Kalman filter-based parallel dynamic state estimation. IEEE Trans. Smart Grid 6(3), 1539–1549 (2015)CrossRefGoogle Scholar
  10. 10.
    S. Mohammadi, H. Mirvaziri, M. Ghazizadeh-Ahsaee, H. Karimipour, Cyber intrusion detection by combined feature selection algorithm. J. Inf. Secur. Appl. 44, 80–88 (2019)Google Scholar
  11. 11.
    H. Karimipour, V. Dinavahi, On False Data Injection Attack Against Dynamic State Estimation on Smart Power Grids (2017). ieeexplore.ieee.orgGoogle Scholar
  12. 12.
    H. Karimipour, V. Dinavahi, On false data injection attack against dynamic state estimation on smart power grids, in 2017 IEEE International Conference on Smart Energy Grid Engineering (SEGE) (2017), pp. 388–393Google Scholar
  13. 13.
    H. Karimipour, V. Dinavahi, Accelerated parallel WLS state estimation for large-scale power systems on GPU, in 2013 North American Power Symposium (NAPS) (2013), pp. 1–6Google Scholar
  14. 14.
    H. Karimipour, V. Dinavahi, On detailed synchronous generator modeling for massively parallel dynamic state estimation, in 2014 North American Power Symposium (NAPS) (2014), pp. 1–6Google Scholar
  15. 15.
    Y. Zhang, T. Huang, E.F. Bompard, Big data analytics in smart grids: a review. Energy Inform 1(1), 8 (2018)CrossRefGoogle Scholar
  16. 16.
    A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Big data and internet of things security and forensics: challenges and opportunities, in Handbook of Big Data and IoT Security, (Springer, Cham, 2019), pp. 1–4Google Scholar
  17. 17.
    Renewable Energy Statistics, 2018. /publications/2018/Jul/Renewable-Energy-Statistics-2018 Google Scholar
  18. 18.
    Y. Yan, Y. Qian, H. Sharif, D. Tipper, A survey on smart grid communication infrastructures: motivations, requirements and challenges. IEEE Commun. Surv. Tutorials 15(1), 5–20 (2013)CrossRefGoogle Scholar
  19. 19.
    M. Zahran, Smart Grid Technology, Vision, Management and Control. WSEAS Transactions on Systems (2013). researchgate.net
  20. 20.
    S. Geris, H. Karimipour, A feature selection-based approach for joint cyber-attack detection and state estimation, in IEEE Int. Conf. on Smart Energy Grid Engineering (SEGE) (2019), pp. 1–5Google Scholar
  21. 21.
    M.R. Begli, F. Derakhshan, H. Karimipour, A layered intrusion detection system for critical infrastructure using machine learning, in IEEE Int. Conf. on Smart Energy Grid Engineering (SEGE) (2019), pp. 1–5Google Scholar
  22. 22.
    H. Karimipour, V. Dinavahi, Robust massively parallel dynamic state estimation of power systems against cyber-attack. IEEE Access 6, 2984–2995 (2018)CrossRefGoogle Scholar
  23. 23.
    H. Karimipour, A. Dehghantanha, R.M.M. Parizi, K.-K.R.R. Choo, H. Leung, A deep and scalable unsupervised machine learning system for cyber-attack detection in large-scale smart grids. IEEE Access 7, 1–1 (2019)CrossRefGoogle Scholar
  24. 24.
    H.H. Pajouh, R. Javidan, R. Khayami, A. Dehghantanha, K.-K.R. Choo, A two-layer dimension reduction and two-tier classification model for anomaly-based intrusion detection in IoT backbone networks. IEEE Trans. Emerg. Top. Comput. 7(2), 314–323 (2019)CrossRefGoogle Scholar
  25. 25.
    A. Azmoodeh, A. Dehghantanha, M. Conti, K.K.R. Choo, Detecting crypto-ransomware in IoT networks based on energy consumption footprint. J. Ambient. Intell. Humaniz. Comput. 9(4), 1141–1152 (2018)CrossRefGoogle Scholar
  26. 26.
    S. Clements, H. Kirkham, Cyber-Security Considerations for the Smart Grid (2010). ieeexplore.ieee.org
  27. 27.
    F. Sabena, A. Dehghantanha, A.P. Seddon, A review of vulnerabilities in identity management using biometrics, in 2010 Second International Conference on Future Networks (2010), pp. 42–49Google Scholar
  28. 28.
    S. Sagiroglu, A. Ozbilen, I. Colak, Vulnerabilities and measures on smart grid application in renewable energy, in 2012 International Conference on Renewable Energy Research and Applications (ICRERA) (2012), pp. 1–4Google Scholar
  29. 29.
    D.R. McKinnel, T. Dargahi, A. Dehghantanha, K.-K.R. Choo, A systematic literature review and meta-analysis on artificial intelligence in penetration testing and vulnerability assessment. Comput. Electr. Eng. 75, 175–188 (2019)CrossRefGoogle Scholar
  30. 30.
    A. Metke, R. Ekl, Security Technology for Smart Grid Networks (2010). ieeexplore.ieee.org
  31. 31.
    A. Ozbilen, I. Colak, S. Sagiroglu, A Survey on SCADA/Distributed Control System Current Security Development and Studies (2010)Google Scholar
  32. 32.
    Guidelines for smart grid cyber security, Gaithersburg, MD (2010)Google Scholar
  33. 33.
    A. Azmoodeh, A. Dehghantanha, R.M. Parizi, H. Karimipour, E. Modiri, D.E. Newton, Fuzzy pattern tree for edge malware detection and categorization in IoT zero trust distributed computing view project naive-Bayesian-based model for interoperability among heterogeneous systems in intelligent buildings view project fuzzy pattern tree for. Art. J. Syst. Archit. (2019)Google Scholar
  34. 34.
    F. Daryabar, A. Dehghantanha, N. I. Udzir, S. bin Shamsuddin, Towards secure model for SCADA systems, in Proceedings Title: 2012 International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec) (2012), pp. 60–64Google Scholar
  35. 35.
    T. Flick, J. Morehouse, Securing the Smart Grid: Next Generation Power Grid Security (2010)Google Scholar
  36. 36.
    J. Sakhnini, H. Karimipour, and A. Dehghantanha, Smart Grid Cyber Attacks Detection using Supervised Learning and Heuristic Feature Selection. arXiv Prepr. arXiv1907.03313 (2019)Google Scholar
  37. 37.
    A. Azmoodeh, A. Dehghantanha, K.-K.R. Choo, Robust malware detection for internet of (battlefield) things devices using deep Eigenspace learning. IEEE Trans. Sustain. Comput. 4(1), 88–95 (2019)CrossRefGoogle Scholar
  38. 38.
    K. Shaerpour, A. Dehghantanha, R. Mahmod, Trends in android malware detection. J. Digit. Forensics Secur. Law (2013)Google Scholar
  39. 39.
    A. Shalaginov, S. Banin, et al., Machine Learning Aided Static Malware Analysis: A Survey and Tutorial (Springer, Berlin, 2018)Google Scholar
  40. 40.
    I.A. Saeed, A. Selamat, A.M.A. Abuagoub, A survey on malware and malware detection systems. Int. J. Comput. Appl. 67(16), 25–31 (2013)Google Scholar
  41. 41.
    X. Wang, P. Yi, Security framework for wireless communications in smart distribution grid. IEEE Trans. Smart Grid 2(4), 809–818 (2011)CrossRefGoogle Scholar
  42. 42.
    M. Gunduz, R. Das, Analysis of cyber-attacks on smart grid applications, in 2018 International Conference on Artificial Intelligence and Data Processing (IDAP) (2018). ieeexplore.ieee.org
  43. 43.
    P. Zikopoulos, C. Eaton, Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data (2011).Google Scholar
  44. 44.
    G. Escobedo, N. Jacome, G. Arroyo-Figueroa, Big data & analytics to support the renewable energy integration of smart grids—case study: power solar generation, in Proceedings of the 2nd International Conference on Internet of Things, Big Data and Security, 2017, pp. 267–275Google Scholar
  45. 45.
    T. Zhu, S. Xiao, Q. Zhang, Y. Gu, P. Yi, Y. Li, Emergent technologies in big data sensing: a survey. Int. J. Distrib. Sens. Networks 2015, 1–13 (2015)Google Scholar
  46. 46.
    S. Sagiroglu, R. Terzi, Y. Canbay, I. Colak, Big data issues in smart grid systems, in 2016 IEEE International Conference on Renewable Energy Research and Applications (ICRERA) (2016), pp. 1007–1012Google Scholar
  47. 47.
    H. Daki, A. El Hannani, A. Aqqal, A. Haidine, A. Dahbi, Big data management in smart grid: concepts, requirements and implementation. J. Big Data 4(1), 13 (2017)CrossRefGoogle Scholar
  48. 48.
    A. Paro, E. Fadigas, A Methodology for Biomass Cogeneration Plants Overall Energy Efficiency Calculation and Measurement—A Basis for Generators Real Time Efficiency Data Disclosure (2011). ieeexplore.ieee.org
  49. 49.
    A. MacGillivray, H. Jeffrey, M. Winskel, I. Bryden, Innovation and cost reduction for marine renewable energy: a learning investment sensitivity analysis. Technol. Forecast. Soc. Change 87, 108–124 (2014)CrossRefGoogle Scholar
  50. 50.
    R.J.K. Wood, A.S. Bahaj, S.R. Turnock, L. Wang, M. Evans, Tribological design constraints of marine renewable energy systems. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 368(1929), 4807–4827 (2010)CrossRefGoogle Scholar
  51. 51.
    J. Kaldellis, Optimum autonomous wind–power system sizing for remote consumers, using long-term wind speed data. Appl. Energy 71(3), 215–233 (2002)CrossRefGoogle Scholar
  52. 52.
    C. Kacfah Emani, N. Cullot, C. Nicolle, Understandable big data: a survey. Comput. Sci. Rev. 17, 70–81 (2015)MathSciNetCrossRefGoogle Scholar
  53. 53.
    M. Chen, S. Mao, Y. Liu, Big data: a survey. Mob. Networks Appl. 19(2), 171–209 (2014)CrossRefGoogle Scholar
  54. 54.
    B. Fang et al., The Contributions of Cloud Technologies to Smart Grid (Elsevier, Amsterdam)Google Scholar
  55. 55.
    S. Watson, A. Dehghantanha, Digital forensics: the missing piece of the internet of things promise. Comput. Fraud Secur. 2016(6), 5–8 (2016)CrossRefGoogle Scholar
  56. 56.
    A. Aminnezhad, A. Dehghantanha, A survey on privacy issues in digital forensics. Int. J. Cyber-Security Digit. Forensics 1(4), 311–323 (2012)Google Scholar
  57. 57.
    P. McDaniel, S. McLaughlin, Security and Privacy Challenges in the Smart Grid (2009). ieeexplore.ieee.org
  58. 58.
    F. Li, B. Luo, P. Liu, Secure Information Aggregation for Smart Grids Using Homomorphic Encryption (2010). ieeexplore.ieee.org
  59. 59.
    G. Kalogridis, C. Efthymiou, S. Z. Denic, T. A. Lewis, R. Cepeda, Privacy for smart meters: towards undetectable appliance load signatures, in 2010 First IEEE International Conference on Smart Grid Communications, 2010, pp. 232–237Google Scholar
  60. 60.
    V. Rastogi, S. Nath, Differentially Private Aggregation of Distributed Time-Series with Transformation and Encryption (2010). dl.acm.orgGoogle Scholar
  61. 61.
    L. Xie, Y. Mo, B. Sinopoli, False Data Injection Attacks In Electricity Markets (2010). ieeexplore.ieee.org
  62. 62.
    S. Ruj, A. Pal, Analyzing Cascading Failures in Smart Grids Under Random and Targeted Attacks (2014). ieeexplore.ieee.org
  63. 63.
    Y. Yuan, Z. Li, K. Ren, Quantitative Analysis of Load Redistribution Attacks in Power Systems (2012). ieeexplore.ieee.org
  64. 64.
    R. Tan, V. B. Krishna, et al., Impact of Integrity Attacks on Real-Time Pricing in Smart Grids (2013). dl.acm.org
  65. 65.
    L. Jia, J. Kim, R. Thomas, L. Tong, Impact of Data Quality on Real-Time Locational Marginal Price (2013). ieeexplore.ieee.org
  66. 66.
    M. Esmalifalak, G. Shi, Z. Han, L. Song, Bad data injection attack and defense in electricity market using game theory study. IEEE Trans. Smart Grid 4(1), 160–169 (2013)CrossRefGoogle Scholar
  67. 67.
    G. Epiphaniou, M. Walshe, H. Al-Khateeb, M. Hammoudeh, V. Katos, A. Dehghantanha, Non-interactive zero knowledge proofs for the authentication of iot devices in reduced connectivity environments. Ad Hoc Networks 95, 101988 (2019)CrossRefGoogle Scholar
  68. 68.
    A. Hamlyn, H. Cheung, T. Mander, L. Wang, C. Yang, and R. Cheung, Network security management and authentication of actions for smart grids operations, in 2007 IEEE Canada Electrical Power Conference, 2007, pp. 31–36Google Scholar
  69. 69.
    M. M. Fouda, Z. M. Fadlullah, N. Kato, R. Lu, X. Shen, Towards a light-weight message authentication mechanism tailored for Smart Grid communications, in 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS) (2011), pp. 1018–1023Google Scholar
  70. 70.
    R. Ranchal et al., Protection of identity information in cloud computing without trusted third party, in 2010 29th IEEE Symposium on Reliable Distributed Systems (2010), pp. 368–372Google Scholar
  71. 71.
    M. Ben-Or, A. Wigderson, A. Wigderson, Completeness theorems for non-cryptographic fault-tolerant distributed computation, in Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing—STOC ’88 (1988), pp. 1–10Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hossein Mohammadi Rouzbahani
    • 1
    Email author
  • Hadis Karimipour
    • 1
  • Gautam Srivastava
    • 2
  1. 1.School of Engineering, University of GuelphGuelphCanada
  2. 2.Department of Mathematics and Computer ScienceBrandon UniversityBrandonCanada

Personalised recommendations