Integration of WSN with IoT Applications: A Vision, Architecture, and Future Challenges

  • Karan Bajaj
  • Bhisham SharmaEmail author
  • Raman Singh
Part of the EAI/Springer Innovations in Communication and Computing book series (EAISICC)


The Internet of Things (IoT) represents the physical world of devices and objects connected over the network using wireless sensors. This chapter gives detailed study about the different applications of IoT with the integration of WSN (wireless sensor networks) with Internet connectivity. This allows applications to communicate among themselves and users on a global scale. A large number of IoT applications, like smart home, buildings, transport, water management, healthcare, agriculture, environment and industries, together form the smart city. Along with this, various challenges in the implementation of applications are discussed related to the reliability, sustainability, and efficiency. An open architecture looking into current need of IoT is also proposed and discussed.


IoT Smart city WSN Cloud computing Mobile computing 


  1. 1.
    Seth, P., Sarangi, S.R.: Internet of things: architectures, protocols, and applications. J. Electr. Comput. Eng. 2017, (2017)Google Scholar
  2. 2.
    Jin, J., Gubbi, J., Marusic, S., Palaniswami, M.: An information framework for creating a smart city through internet of things. IEEE Internet Things J. 1(2), 112–121 (2014)CrossRefGoogle Scholar
  3. 3.
    Giri, A., Dutta, S., Neogy, S., Dahal, K., Pervez, Z.: Internet of things (IoT): a survey on architecture, enabling technologies, applications and challenges. In: Proceedings of the 1st International Conference on Internet of Things and Machine Learning, p. 7. ACM (2017)Google Scholar
  4. 4.
    Talari, S., Shafie-Khah, M., Siano, P., Loia, V., Tommasetti, A., Catalão, J.: A review of smart cities based on the internet of things concept. Energies. 10(4), 421 (2017)CrossRefGoogle Scholar
  5. 5.
    Bawany, N.Z., Shamsi, J.A.: Smart city architecture: vision and challenges. Int. J. Adv. Comput. Sci. Appl. 6(11), 246–255 (2015)Google Scholar
  6. 6.
    Al-Qaseemi, S.A., Almulhim, H.A., Almulhim, M.F., Chaudhry, S.R.: IoT architecture challenges and issues: lack of standardization. In: Future Technologies Conference (FTC), pp. 731–738. IEEE (2016)Google Scholar
  7. 7.
    Li, Y., Björck, F., Xue, H.: Iot architecture enabling dynamic security policies. In: Proceedings of the 4th International Conference on Information and Network Security, pp. 50–54. ACM (2016)Google Scholar
  8. 8.
    Hashem, I.A.T., Chang, V., Anuar, N.B., Adewole, K., Yaqoob, I., Gani, A., et al.: The role of big data in smart city. Int. J. Inf. Manag. 36(5), 748–758 (2016)CrossRefGoogle Scholar
  9. 9.
    Aazam, M., Zeadally, S., Harras, K.A.: Offloading in fog computing for IoT: review, enabling technologies, and research opportunities. Futur. Gener. Comput. Syst. 87, 278–289 (2018)CrossRefGoogle Scholar
  10. 10.
    How To Build a Holistic Smart City Architecture.: Retrieved from (2019)
  11. 11.
    Catarinucci, L., De Donno, D., Mainetti, L., Palano, L., Patrono, L., Stefanizzi, M.L., Tarricone, L.: An IoT-aware architecture for smart healthcare systems. IEEE Internet Things J. 2(6), 515–526 (2015)CrossRefGoogle Scholar
  12. 12.
    Farahani, B., Firouzi, F., Chang, V., Badaroglu, M., Constant, N., Mankodiya, K.: Towards fog-driven IoT eHealth: promises and challenges of IoT in medicine and healthcare. Futur. Gener. Comput. Syst. 78, 659–676 (2018)CrossRefGoogle Scholar
  13. 13.
    Sodhro, A.H., Luo, Z., Sangaiah, A.K., Baik, S.W.: Mobile edge computing based QoS optimization in medical healthcare applications. Int. J. Inf. Manag. 45, 308–318 (2019)CrossRefGoogle Scholar
  14. 14.
    Sohn, S.Y., Bae, M., Lee, D.K.R., Kim, H.: Alarm system for elder patients medication with IoT-enabled pill bottle. In: 2015 International Conference on Information and Communication Technology Convergence (ICTC), pp. 59–61. IEEE (2015)Google Scholar
  15. 15.
    Laranjo, I., Macedo, J., Santos, A.: Internet of things for medication control: service implementation and testing. Procedia Technol. 5, 777–786 (2012)CrossRefGoogle Scholar
  16. 16.
    Kalantarian, H., Motamed, B., Alshurafa, N., Sarrafzadeh, M.: A wearable sensor system for medication adherence prediction. Artif. Intell. Med. 69, 43–52 (2016)CrossRefGoogle Scholar
  17. 17.
    Marques, G., Pitarma, R.: An indoor monitoring system for ambient assisted living based on internet of things architecture. Int. J. Environ. Res. Public Health. 13(11), 1152 (2016)CrossRefGoogle Scholar
  18. 18.
    Rghioui, A., Sendra, S., Lloret, J., Oumnad, A.: Internet of things for measuring human activities in ambient assisted living and e-health. Netw. Protoc. Algorithms. 8(3), 15–28 (2016)CrossRefGoogle Scholar
  19. 19.
    P. Raj and A. C. Raman, The Internet of Things: Enabling Technologies, Platforms, and Use Cases. Boca Raton, FL, USA: CRC Press (2017)Google Scholar
  20. 20.
    Lee, I., Lee, K.: The Internet of Things (IoT): applications, investments, and challenges for enterprises. Bus. Horiz. 58(4), 431–440 (2015)CrossRefGoogle Scholar
  21. 21.
    J. Höller, V. Tsiatsis, C. Mulligan, S. Karnouskos, S. Avesand, and D. Boyle, From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence. Amsterdam, The Netherlands: Elsevier (2014)CrossRefGoogle Scholar
  22. 22.
    Tzounis, A., Katsoulas, N., Bartzanas, T., Kittas, C.: Internet of Things in agriculture, recent advances and future challenges. Biosyst. Eng. 164, 31–48 (2017)CrossRefGoogle Scholar
  23. 23.
    Patel, K.K., Patel, S.M.: Internet of things-IOT: definition, characteristics, architecture, enabling technologies, application & future challenges. International journal of engineering science and. Computing. 6(5), (2016)Google Scholar
  24. 24.
    Solutions for Smart Farming (Agriculture IoT).: Retrieved from (2019)
  25. 25.
    Powerful software for running a modern farm.: Retrieved from (2019)
  26. 26.
    The Phytech Platform.: Retrieved from (2019)
  27. 27.
    Semios We Help Growers Worry Less.: Retrieved from (2019)
  28. 28.
    Elijah, O., Rahman, T.A., Orikumhi, I., Leow, C.Y., Hindia, M.N.: An overview of Internet of things (IoT) and data analytics in agriculture: benefits and challenges. IEEE Internet Things J. 5(5), 3758–3773 (2018)CrossRefGoogle Scholar
  29. 29.
    Sundmaeker, H., Guillemin, P., Friess, P., Woelfflé, S.: Vision and challenges for realising the Internet of things. Clust. Eur. Res. Proj. Internet Things Eur. Commiss. 3(3), 34–36 (2010)Google Scholar
  30. 30.
    Soliman, M., Abiodun, T., Hamouda, T., Zhou, J., Lung, C.H.: Smart home: integrating internet of things with web services and cloud computing. In: 2013 IEEE 5th International Conference on Cloud Computing Technology and Science, vol. 2, pp. 317–320. IEEE (2013, December)Google Scholar
  31. 31.
    Son, J.-Y., et al.: Resource-aware smart home management system by constructing resource relation graph. IEEE Trans. Consum. Electron. 57, 1112–1119 (2011)CrossRefGoogle Scholar
  32. 32.
    Han, D.-M., Lim, J.-H.: Design and implementation of smart home energy management systems based on zigbee. IEEE Tran. Consum. Electron. 56, 1417–1425 (2010)CrossRefGoogle Scholar
  33. 33.
    Wu, C.-L., Fu, L.-C.: Design and realization of a framework for human–system interaction in smart homes. IEEE Trans. Syst. Man Cybern. 42, 15–31 (2012)CrossRefGoogle Scholar
  34. 34.
    Alam, M.R., et al.: SPEED: an inhabitant activity prediction algorithm for smart homes. IEEE Trans. on Systems, Man and Cybernetics. 42, 985–990 (2012)CrossRefGoogle Scholar
  35. 35.
    Chen, L., Nugent, C.D., Wang, H.: A knowledge-driven approach to activity recognition in smart homes. IEEE Trans. Knowl. Data Eng. 961–974 (2012)CrossRefGoogle Scholar
  36. 36.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M.: Internet of things for smart cities. IEEE Internet Things J. 1(1), 22–32 (2014)CrossRefGoogle Scholar
  37. 37.
    Pradeep, S., Kousalya, T., Suresh, K.A., Edwin, J.: Iot and its connectivity challenges in smart home. Int. Res. J. Eng. Technol. 3, 1040–1043 (2016)Google Scholar
  38. 38.
    Guerrero-Ibáñez, J., Zeadally, S., Contreras-Castillo, J.: Sensor technologies for intelligent transportation systems. Sensors. 18(4), 1212 (2018)CrossRefGoogle Scholar
  39. 39.
    Abdelhamid, S., Hassanein, H.S., Takahara, G.: Vehicle as a mobile sensor. Procedia Comput. Sci. 34, 286–295 (2014)CrossRefGoogle Scholar
  40. 40.
    Darwish, T.S., Bakar, K.A.: Fog based intelligent transportation big data analytics in the internet of vehicles environment: motivations, architecture, challenges, and critical issues. IEEE Access. 6, 15679–15701 (2018)CrossRefGoogle Scholar
  41. 41.
    Ejaz, W., Naeem, M., Shahid, A., Anpalagan, A., Jo, M.: Efficient energy management for the internet of things in smart cities. IEEE Commun. Mag. 55(1), 84–91 (2017)CrossRefGoogle Scholar
  42. 42.
    Al-Ali, A.R., Zualkernan, I.A., Rashid, M., Gupta, R., Alikarar, M.: A smart home energy management system using IoT and big data analytics approach. IEEE Trans. Consum. Electron. 63(4), 426–434 (2017)CrossRefGoogle Scholar
  43. 43.
    Rodriguez-Diaz, E., Vasquez, J.C., Guerrero, J.M.: Intelligent DC homes in future sustainable energy systems: when efficiency and intelligence work together. IEEE Consum. Electron. Magaz. 5(1), 74–80 (2016)CrossRefGoogle Scholar
  44. 44.
    Kim, D.S., Son, S.Y., Lee, J.: Developments of the in-home display systems for residential energy monitoring. IEEE Trans. Consum. Electron. 59(3), 492–498 (2013)CrossRefGoogle Scholar
  45. 45.
    Son, Y.S., Pulkkinen, T., Moon, K.D., Kim, C.: Home energy management system based on power line communication. IEEE Trans. Consum. Electron. 56(3), 1380–1386 (2010)CrossRefGoogle Scholar
  46. 46.
    Kushiro, N., Suzuki, S., Nakata, M., Takahara, H., Inoue, M.: Integrated residential gateway controller for home energy management system. in IEEE Trans. Consum. Electron. 49(3), 629–636 (2003)CrossRefGoogle Scholar
  47. 47.
    Ozger, M., Cetinkaya, O., Akan, O.B.: Energy harvesting cognitive radio networking for iot-enabled smart grid. Mob. Netw. Appl. 23(4), 956–966 (2018)CrossRefGoogle Scholar
  48. 48.
    Bekara, C.: Security issues and challenges for the IoT-based smart grid. Procedia Comput. Sci. 34, 532–537 (2014)CrossRefGoogle Scholar
  49. 49.
    Marjani, M., Nasaruddin, F., Gani, A., Karim, A., Hashem, I.A.T., Siddiqa, A., Yaqoob, I.: Big IoT data analytics: architecture, opportunities, and open research challenges. IEEE Access. 5, 5247–5261 (2017)CrossRefGoogle Scholar
  50. 50.
    Robles, T., Alcarria, R., de Andrés, D.M., de la Cruz, M.N., Calero, R., Iglesias, S., López, M.: An IoT based reference architecture for smart water management processes. JoWUA. 6(1), 4–23 (2015)Google Scholar
  51. 51.
    Kamienski, C., Soininen, J.P., Taumberger, M., Fernandes, S., Toscano, A., Cinotti, T.S., et al.: SWAMP: an IoT-based smart water management platform for precision irrigation in agriculture. In: 2018 Global Internet of Things Summit (GIoTS), pp. 1–6. IEEE (2018)Google Scholar
  52. 52.
    Ntuli, N., Abu-Mahfouz, A.: A simple security architecture for smart water management system. Procedia Comput. Sci. 83, 1164–1169 (2016)CrossRefGoogle Scholar
  53. 53.
    Nikhil, R., Rajender, R., Dushyantha, G.R., Jagadevi, N.: Smart water quality monitoring system using IoT environment. Int. J. Innov. Eng. Technol. 10(4), (2018). Jing, M.: The design of wireless remote monitoring system of water supply based on GPRS. In: Computer Science and Society (ISCCS), 2011 International Symposium on, Kota Kinabalu, pp. 29–31 (2011)Google Scholar
  54. 54.
    Purohit, A., Gokhale, U.: Real time water quality measurement system based on GSM. IOSR J. Electron. Commun. Eng. 9(3), 63–67 (2014)CrossRefGoogle Scholar
  55. 55.
    Beri, N.N.: Wireless sensor network based system design for chemical parameter monitoring in water. Int. J Electron. Commun. Soft Comput. Sci. Eng. 3(6),Google Scholar
  56. 56.
    Wadekar, S., Vakare, V., Prajapati, R., Yadav, S., Yadav, V.: Smart water management using IOT. In: 2016 5th International Conference on Wireless Networks and Embedded Systems (WECON), pp. 1–4. IEEE (2016)Google Scholar
  57. 57.
    Koo, D., Piratla, K., Matthews, C.J.: Towards sustainable water supply: schematic development of big data collection using internet of things (IoT). Procedia Eng. 118, 489–497 (2015)CrossRefGoogle Scholar
  58. 58.
    Kelly, S.D.T., Suryadevara, N.K., Mukhopadhyay, S.C.: Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sensors J. 13(10), 3846–3853 (2013)CrossRefGoogle Scholar
  59. 59.
    Ahmed, E., Yaqoob, I., Gani, A., Imran, M., Guizani, M.: Internet-of-things-based smart environments: state of the art, taxonomy, and open research challenges. IEEE Wirel. Commun. 23(5), 10–16 (2016)CrossRefGoogle Scholar
  60. 60.
    Navghane, S.S., Killedar, M.S., Rohokale, V.M.: IoT based smart garbage and waste collection bin. Int. J. Adv. Res. Electron. Commun. Eng. 5(5), 1576–1578 (2016)Google Scholar
  61. 61.
    Fioccola, G.B., Sommese, R., Tufano, I., Canonico, R., Ventre, G.: Polluino: an efficient cloud-based management of IoT devices for air quality monitoring. In: 2016 IEEE 2nd International Forum on Research and Technologies for Society and Industry Leveraging a Better Tomorrow (RTSI), pp. 1–6. IEEE (2016)Google Scholar
  62. 62.
    Garcia-de-Prado, A., Ortiz, G., Boubeta-Puig, J., Corral-Plaza, D.: Air4People: a smart air quality monitoring and context-aware notification system. J. Univ. Comput. Sci. 24(7), 846–863 (2018)Google Scholar
  63. 63.
    Eltom, R.H., Hamood, E.A., Mohammed, A.A., Osman, A.A.: Early warning firefighting system using internet of things. In: 2018 International Conference on Computer, Control, Electrical, and Electronics Engineering (ICCCEEE), pp. 1–7. IEEE (2018)Google Scholar
  64. 64.
    Aggarwal, S., Mishra, P.K., Sumakar, K.V.S., Chaturvedi, P.: Landslide monitoring system implementing IOT using video camera. In: 2018 3rd International Conference for Convergence in Technology (I2CT), pp. 1–4. IEEE (2018)Google Scholar
  65. 65.
    McKean, J., Roering, J.: Objective landslide detection and surface morphology mapping using high-resolution airborne laser altimetry. Geomorphology. 57(3–4), 331–351 (2004)CrossRefGoogle Scholar
  66. 66.
    Rosin P.L., Hervas J.: Image Thresholding for Landslide Detection by Genetic Programming (unpublished)Google Scholar
  67. 67.
    Gong, C., Lei, G., Tianyun, Z., Junwei, H.: Automatic landslide detection from remote-sensing imagery using a scene classification method based on BoVW and pLSA. Int. J. Remote Sens. 34(1), 45–59 (2013)CrossRefGoogle Scholar
  68. 68.
    El Moulat, M., Debauche, O., Mahmoudi, S., Brahim, L.A., Manneback, P., Lebeau, F.: Monitoring system using internet of things for potential landslides. Procedia Comput. Sci. 134, 26–34 (2018)CrossRefGoogle Scholar
  69. 69.
    Pirmagomedov, R., Blinnikov, M., Amelyanovich, A., Glushakov, R., Loskutov, S., Koucheryavy, A., et al.: IoT based earthquake prediction technology. In: Internet of Things, Smart Spaces, and Next Generation Networks and Systems, pp. 535–546. Springer, Cham (2018)CrossRefGoogle Scholar
  70. 70.
    Alphonsa, A., Ravi, G.: Earthquake early warning system by IOT using Wireless sensor networks. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), pp. 1201–1205. IEEE (2016)Google Scholar
  71. 71.
    Wu, T., Wu, F., Redouté, J.M., Yuce, M.R.: An autonomous wireless body area network implementation towards IoT connected healthcare applications. IEEE Access. 5, 11413–11422 (2017)CrossRefGoogle Scholar
  72. 72.
    Mankodiya, K., Hassan, Y.A., Vogt, S., Gehring, H., Hofmann, U.G.: Wearable ECG module for long-term recordings using a smartphone processor. In: Proceedings of the 5th International Workshop on Ubiquitous Health and Wellness, vol. 2629. Copenhagen, Denmark (2010)Google Scholar
  73. 73.
    Suma, N., Samson, S.R., Saranya, S., Shanmugapriya, G., Subhashri, R.: IOT based smart agriculture monitoring system. Int. J. Recent Innov. Trends Comput. Commun. 5(2), 177–181 (2017)Google Scholar
  74. 74.
    Prathibha, S.R., Hongal, A., Jyothi, M.P.: IOT based monitoring system in smart agriculture. In: 2017 International Conference on Recent Advances in Electronics and Communication Technology (ICRAECT), pp. 81–84. IEEE (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Chitkara University School of Engineering and Technology, Chitkara UniversityHimachal PradeshIndia
  2. 2.Department of Computer Science & EngineeringThapar Institute of Engineering and TechnologyPatialaIndia

Personalised recommendations