Advertisement

The Establishment of the Standard Cosmological Model Through Observations

  • Ricardo Tanausú Génova-SantosEmail author
Chapter
  • 32 Downloads

Abstract

Over the last decades, observations with increasing quality have revolutionized our understanding of the general properties of the Universe. Questions posed for millenia by mankind about the origin, evolution and structure of the cosmos have found an answer. This has been possible mainly thanks to observations of the Cosmic Microwave Background, of the large-scale distribution of matter structure in the local Universe, and of type Ia supernovae that have revealed the accelerated expansion of the Universe. All these observations have successfully converged into the so-called “concordance model”. In spite of all these observational successes, there are still some important open problems, the most obvious of which are what generated the initial matter inhomogeneities that led to the structure observable in today’s Universe, and what is the nature of dark matter, and of the dark energy that drives the accelerated expansion. In this chapter I will expand on the previous aspects. I will present a general description of the Standard Cosmological Model of the Universe, with special emphasis on the most recent observations that have allowed to establish this model. I will also discuss the shortfalls of this model, its most pressing open questions, and will briefly describe the observational programmes that are being planned to tackle these issues.

Notes

Acknowledgements

Most of this work was written during a 5-week visit of the author to the University of Cambridge, in summer 2019. The author thanks the hospitality of the Cavendish Astrophysics group during this visit. The author also thanks Francisco-Shu Kitaura for reading parts of the text, and the referee for a careful reading of the text and useful comments. Some of the figures presented here have been taken from the “Planck Image Gallery” (ESA and Planck Collaboration).

References

  1. 1.
    G. Gamow, Phys. Rev. 70, 572 (1946)ADSCrossRefGoogle Scholar
  2. 2.
    R.A. Alpher, R. Herman, Nature 62, 774 (1948)ADSCrossRefGoogle Scholar
  3. 3.
    H. Bondi, T. Gold, Mon. Not. R. Astron. Soc. 108, 252 (1948)ADSCrossRefGoogle Scholar
  4. 4.
    W.S. Adams, Astrophys. J. 93, 11 (1941)ADSCrossRefGoogle Scholar
  5. 5.
    A.A. Penzias, R.W. Wilson, Astrophys. J. 142, 419 (1965)ADSCrossRefGoogle Scholar
  6. 6.
    S. Weinberg, Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (Wiley, New York, 1972)Google Scholar
  7. 7.
    F. Zwicky, Helv. Phys. Acta 6, 110 (1933)ADSGoogle Scholar
  8. 8.
    V.C. Rubin, W.K. Ford Jr., N. Thonnard, Astrophys. J. 238, 471 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    D.J. Fixsen, Astrophys. J. 707, 916 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    A.A. Starobinsky, ZhETF Pisma Redaktsiiu 30, 719 (1979)ADSGoogle Scholar
  11. 11.
    A.H. Guth, Phys. Rev. D 23, 347 (1981)ADSCrossRefGoogle Scholar
  12. 12.
    A. Linde, Inflationary Cosmology, vol. 738 (Springer, Berlin, 2008), p. 1zbMATHCrossRefGoogle Scholar
  13. 13.
    A. Challinor, Astrophysics from Antarctica, vol. 288 (2013), p. 42Google Scholar
  14. 14.
    A. Linde, Phys. Rev. D 59, 023503 (1999)ADSCrossRefGoogle Scholar
  15. 15.
    A. Linde, J. Cosmol. Astropart. Phys. 5, 002 (2003)ADSCrossRefGoogle Scholar
  16. 16.
    S. Tsujikawa, Modified gravity models of dark energy, in Lectures on Cosmology. Lecture Notes in Physics, vol. 800 (Springer, Berlin, 2010), p. 99Google Scholar
  17. 17.
    J.-P. Uzan, Rev. Mod. Phys. 75, 403 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    G.F. Smoot, C.L. Bennett, A. Kogut et al., Astrophys. J. Lett. 396, L1 (1992)ADSCrossRefGoogle Scholar
  19. 19.
    P. de Bernardis, P.A.R. Ade, J.J. Bock et al., Nature 404, 955 (2000)ADSCrossRefGoogle Scholar
  20. 20.
    R. Stompor et al., Astrophys. J. Lett. 561, L7 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    A. Benoît et al., Astron. Astrophys. 399, L19 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    C. Dickinson et al., Mon. Not. R. Astron. Soc. 353, 732 (2004)ADSCrossRefGoogle Scholar
  23. 23.
    J.L. Sievers et al., Astrophys. J. 591, 599 (2003)ADSCrossRefGoogle Scholar
  24. 24.
    C.L. Kuo et al., Astrophys. J. 600, 32 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    C.L. Bennett, D. Larson, J.L. Weiland et al., Astrophys. J. Suppl. Ser. 208, 20 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    J.W. Fowler, V. Acquaviva, P.A.R. Ade et al., Astrophys. J. 722, 1148 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    K.T. Story, C.L. Reichardt, Z. Hou et al., Astrophys. J. 779, 86 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    Planck 2018 Results I (2018). arXiv: 1807.06205Google Scholar
  29. 29.
    C. Dickinson, in Draft Proceedings for the Conference Rencontres de Moriond 2016 on Cosmology (2016). arXiv: astro-ph/1606.03606Google Scholar
  30. 30.
    M. Zaldarriaga, U. Seljak, Phys. Rev. D 55, 1830 (1997)ADSCrossRefGoogle Scholar
  31. 31.
    M. Kamionkowski, A. Kosowsky, A. Stebbins, Phys. Rev. D 55, 7368 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    W. Hu, M. White, New Astron. 2, 323 (1997)ADSCrossRefGoogle Scholar
  33. 33.
    S. Das, B.D. Sherwin, P. Aguirre et al., Phys. Rev. Lett. 107, 021301 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    Planck 2018 Results VI (2018). arXiv: 1807.06209Google Scholar
  35. 35.
    Planck 2013 Results XIII, Astron. Astrophys. 594, A13 (2016)Google Scholar
  36. 36.
    A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, Astrophys. J. 876, 85 (2019)ADSCrossRefGoogle Scholar
  37. 37.
    BICEP2 Collaboration, Keck Array Collaboration, P.A.R. Ade et al., Phys. Rev. Lett. 121, 221301 (2018)Google Scholar
  38. 38.
    L. Anderson, E. Aubourg, S. Bailey et al., Mon. Not. R. Astron. Soc. 427, 3435 (2012)ADSCrossRefGoogle Scholar
  39. 39.
    D.W. Hogg, Distance measures in cosmology (2000). arXiv:astro-ph/9905116Google Scholar
  40. 40.
    C. Alcock, B. Paczynski, Nature 281, 358 (1979)ADSCrossRefGoogle Scholar
  41. 41.
    W.J. Percival, Lectures given at Post-Planck Cosmology, Ecole de Physique des Houches, and New Horizons for Observational Cosmology, International School of Physics Enrico Fermi, Varenna (2013). arXiv:astro-ph/1312.5490Google Scholar
  42. 42.
    J. Huchra, M. Davis, D. Latham, J. Tonry, Astrophys. J. Suppl. Ser. 52, 89 (1983)ADSCrossRefGoogle Scholar
  43. 43.
    G. de Vaucouleurs, A. de Vaucouleurs, H.G. Corwin Jr. et al., Sky Telescope 82, 621 (1991)Google Scholar
  44. 44.
    S.A. Shectman, S.D. Landy, A. Oemler et al., Astrophys. J. 470, 172 (1996)ADSCrossRefGoogle Scholar
  45. 45.
    M. Colless, B.A. Peterson, C. Jackson et al. (2003). arXiv:astro-ph/0306581Google Scholar
  46. 46.
    M.J. Drinkwater, R.J. Jurek, C. Blake et al., Mon. Not. R. Astron. Soc. 401, 1429 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    D.G. York, J. Adelman, J.E. Anderson Jr. et al., Astron. J. 120, 1579 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    D.J. Eisenstein, D.H. Weinberg, E. Agol et al., Astron. J. 142, 72 (2011)ADSCrossRefGoogle Scholar
  49. 49.
    S. Cole, W.J. Percival, J.A. Peacock et al., Mon. Not. R. Astron. Soc. 362, 505 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    D.J. Eisenstein, I. Zehavi, D.W. Hogg et al., Astrophys. J. 633, 560 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    M. Ata, F. Baumgarten, J. Baumgarten et al., Mon. Not. R. Astron. Soc. 473, 4773 (2018)ADSCrossRefGoogle Scholar
  52. 52.
    J.E. Bautista, N.G. Busca, J. Guy et al., Astron. Astrophys. 603, A12 (2017)CrossRefGoogle Scholar
  53. 53.
    S. Alam, M. Ata, S. Bailey et al., Mon. Not. R. Astron. Soc. 470, 2617 (2017)ADSCrossRefGoogle Scholar
  54. 54.
    É. Aubourg, S. Bailey, J.E. Bautista et al., Phys. Rev. D 92, 123516 (2015)ADSCrossRefGoogle Scholar
  55. 55.
    F. Marulli, A. Veropalumbo, M. Sereno et al., Astron. Astrophys. 620, A1 (2018)CrossRefGoogle Scholar
  56. 56.
    M. Bonamente, M.K. Joy, S.J. LaRoque et al., Astrophys. J. 647, 25 (2006)ADSCrossRefGoogle Scholar
  57. 57.
    Planck 2015 Results XXII, Astron. Astrophys. 594, A22 (2016)Google Scholar
  58. 58.
    A. Vikhlinin, A.V. Kravtsov, R.A. Burenin et al., Astrophys. J. 692, 1060 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    Planck 2013 Results XX, Astron. Astrophys. 571, A20 (2013)Google Scholar
  60. 60.
    Planck 2015 Results XXIV, Astron. Astrophys. 594, A24 (2016)Google Scholar
  61. 61.
    A.G. Riess, W.H. Press, R.P. Kirshner, Astrophys. J. 473, 88 (1996)ADSCrossRefGoogle Scholar
  62. 62.
    M.M. Phillips, Astrophys. J. Lett. 413, L105 (1993)ADSCrossRefGoogle Scholar
  63. 63.
    A. Sandage, G.A. Tammann, Astrophys. J. 256, 339 (1982)ADSCrossRefGoogle Scholar
  64. 64.
    W.L. Freedman, B.F. Madore, B.K. Gibson et al., Astrophys. J. 553, 47 (2001)ADSCrossRefGoogle Scholar
  65. 65.
    W.L. Freedman, B.F. Madore, D. Hatt et al. (2019). arXiv: 1907.05922Google Scholar
  66. 66.
    E. Macaulay, R.C. Nichol, D. Bacon et al., Mon. Not. R. Astron. Soc. 486, 2184 (2018)ADSCrossRefGoogle Scholar
  67. 67.
    A.G. Riess, A.V. Filippenko, P. Challis et al., Astron. J. 116, 1009 (1998)ADSCrossRefGoogle Scholar
  68. 68.
    S. Perlmutter, G. Aldering, G. Goldhaber et al., Astrophys. J. 517, 565 (1999)ADSCrossRefGoogle Scholar
  69. 69.
    W.M. Wood-Vasey, G. Miknaitis, C.W. Stubbs et al., Astrophys. J. 666, 694 (2007)ADSCrossRefGoogle Scholar
  70. 70.
    P. Astier, J. Guy, N. Regnault et al., Astron. Astrophys. 447, 31 (2006)ADSCrossRefGoogle Scholar
  71. 71.
    M. Betoule, R. Kessler, J. Guy et al., Astron. Astrophys. 568, A22 (2014)CrossRefGoogle Scholar
  72. 72.
    M. Sako, B. Bassett, A.C. Becker et al., Publ. Astron. Soc. Pac. 130, 064002 (2018)ADSCrossRefGoogle Scholar
  73. 73.
    A.G. Riess, L.-G. Strolger, S. Casertano et al., Astrophys. J. 659, 98 (2007)ADSCrossRefGoogle Scholar
  74. 74.
    D.M. Scolnic, D.O. Jones, A. Rest et al., Astrophys. J. 859, 101 (2018)ADSCrossRefGoogle Scholar
  75. 75.
    K.C. Wong, S.H. Suyu, G.C.-F. Chen et al. (2019). arXiv: 1907.04869Google Scholar
  76. 76.
    V. Poulin, T.L. Smith, T. Karwal, M. Kamionkowski, Phys. Rev. Lett. 122, 221301 (2019)ADSCrossRefGoogle Scholar
  77. 77.
    C.D. Kreisch, F.-Y. Cyr-Racine, O. Doré (2019). arXiv: 1902.00534Google Scholar
  78. 78.
    L. Verde, T. Treu, A.G. Riess (2019). arXiv: 1907.10625Google Scholar
  79. 79.
    M. Hasselfield, M. Hilton, T.A. Marriage et al., J. Cosmol. Astropart. Phys. 7, 008 (2013)ADSCrossRefGoogle Scholar
  80. 80.
    S. Bocquet, A. Saro, J.J. Mohr et al., Astrophys. J. 799, 214 (2015)ADSCrossRefGoogle Scholar
  81. 81.
    M. Remazeilles, B. Bolliet, A. Rotti, J. Chluba, Mon. Not. R. Astron. Soc. 483, 3459 (2019)ADSCrossRefGoogle Scholar
  82. 82.
    G.E. Addison, Y. Huang, D.J. Watts et al., Astrophys. J. 818, 132 (2016)ADSCrossRefGoogle Scholar
  83. 83.
    Planck Intermediate Results LI, N. Aghanim, Y. Akrami et al., Astron. Astrophys. 607, A95 (2017)Google Scholar
  84. 84.
    C.L. Bennett, R.S. Hill, G. Hinshaw et al., Astrophys. J. Suppl. Ser. 192, 17 (2011)ADSCrossRefGoogle Scholar
  85. 85.
    Planck 2013 Results XV, Astron. Astrophys. 571, A15 (2014)Google Scholar
  86. 86.
    P. Vielva, E. Martínez-González, R.B. Barreiro, J.L. Sanz, L. Cayón, Astrophys. J. 609, 22 (2004)ADSCrossRefGoogle Scholar
  87. 87.
    Planck 2013 Results XXIII, Astron. Astrophys. 571, A23 (2014)Google Scholar
  88. 88.
    D.J. Schwarz, C.J. Copi, D. Huterer, G.D. Starkman, Classical Quantum Gravity 33, 184001 (2016)ADSCrossRefGoogle Scholar
  89. 89.
    D. Scott (2018). arXiv: 1804.01318Google Scholar
  90. 90.
    Planck 2013 Results XXII, Astron. Astrophys. 571, A22 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Instituto de Astrofísica de CanariasLa Laguna, TenerifeSpain
  2. 2.Departamento de AstrofísicaUniversidad de La Laguna (ULL)La Laguna, TenerifeSpain

Personalised recommendations