Advertisement

Biofilms Forming Microbes: Diversity and Potential Application in Plant–Microbe Interaction and Plant Growth

  • Ajay KumarEmail author
  • Joginder Singh
Chapter
  • 79 Downloads
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 25)

Abstract

Global climatic change and increasing worldwide population pose challenges for crop production. The promising sustainable solution is the integration of beneficial plant–microbes integration with microbiome to improve agriculture production. Microbial biofilms have a significant role in agriculture because they increase soil fertility and promote plant growth. Bacterial quorum sensing (QS) regulated process is biofilm formation. The plant growth promoting bacteria (PGPB) or Rhizobacteria (PGPR) has the ability to increase the crop yield. PGPR-based formulations have been commercialized to enhance agricultural productivity.

Keywords

Biofilm Quorum sensing Phytohormones Biocontrol Biofertilizers Models 

References

  1. Ahmed E, Holmström SJ (2014) Siderophores in environmental research: roles and applications. Microb Biotech 7:196–208CrossRefGoogle Scholar
  2. Alori ET, Babalola OO (2018) Microbial inoculants for improve crop quality and human health. Front Microbiol 9:2213PubMedPubMedCentralCrossRefGoogle Scholar
  3. Al-Ali A, Deravel J, Krier F, Béchet M, Ongena M, Jacques P (2018) Biofilm formation is determinant in tomato rhizosphere colonization by Bacillus velezensis FZB42. Environ Sci Poll Res 25:29910–29920CrossRefGoogle Scholar
  4. Andreozzi A, Prieto P, Mercado-Blanco J, Monaco S, Zampieri E, Romano S, Valè G, Defez R, Bianco C (2019) Efficient colonization of the endophytes Herbaspirillum huttiense RCA24 and enterobacter cloacae RCA25 influences the physiological parameters of Oryza sativa L. cv. Baldo rice. Environ Microbiol.  https://doi.org/10.1111/1462-2920.14688CrossRefGoogle Scholar
  5. Ansari FA, Jafri H, Ahmad I, Abulreesh HH (2017) Factors Affecting Biofilm Formation in in vitro and in the Rhizosphere. In: Ahmad I, Husain FM (eds) Biofilms in plant and soil health. Wiley, Hoboken, USA, p 275CrossRefGoogle Scholar
  6. Barman S, Das S, Bhattacharya SS (2019) The prospects of bio-fertilizer technology for productive and sustainable agricultural growth. In: Singh JS, Singh DP (eds) New and future developments in microbial biotechnology and bioengineering. Elsevier Radarweg, Amsterdam, the Netherlands, pp 233–253CrossRefGoogle Scholar
  7. Besset-Manzoni Y, Rieusset L, Joly P, Comte G, Prigent-Combaret C (2018) Exploiting rhizosphere microbial cooperation for developing sustainable agriculture strategies. Environ Sci Poll Res 25:29953–29970CrossRefGoogle Scholar
  8. Beyenal H, Lewandowski Z (2002) Internal and external mass transfer in biofilms grown at various flow velocities. Biotech Progress 18:55–61CrossRefGoogle Scholar
  9. Bogino PC, Oliva MD, Sorroche FG, Giordano W (2013) The role of bacterial biofilms and surface components in plant-bacterial associations. Int J Mol Sci 14:15838–15859PubMedPubMedCentralCrossRefGoogle Scholar
  10. Calderon CE, Tienda S, Heredia Z, Diez EM, Cárcamo-Oyarce G, Eberl L, Cazorla FM (2019) The compound 2-hexyl, 5-propyl resorcinol has a key role in biofilm formation by the biocontrol rhizobacterium Pseudomonas chlororaphis PCL1606. Front Microbiol 10:396PubMedPubMedCentralCrossRefGoogle Scholar
  11. Choi O, Kang DW, Cho SK, Lee Y, Kang B, Bae J, Kim S, Lee JH, Lee SE, Kim J (2018) Anti-quorum sensing and anti-biofilm formation activities of plant extracts from South Korea. Asian Pacific J Trop Biomed 8:411CrossRefGoogle Scholar
  12. Choudhary S, Schmidt-Dannert C (2010) Applications of quorum sensing in biotechnology. Appl Microbiol Biotech 86:1267–1279CrossRefGoogle Scholar
  13. Compant S, Duffy B, Nowak J, Clément C, Barka EA (2005) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959PubMedPubMedCentralCrossRefGoogle Scholar
  14. D’Acunto B, Frunzo L, Mattei MR (2017) Continuum approach to mathematical modelling of multispecies biofilms. Ricerche mat 66:153–169CrossRefGoogle Scholar
  15. D’Acunto B, Frunzo L, Klapper I, Mattei MR, Stoodley P (2019) Mathematical modeling of dispersal phenomenon in biofilms. Math Biosci 307:70–87PubMedCrossRefGoogle Scholar
  16. De Kievit TR, Iglewski BH (2000) Bacterial quorum sensing in pathogenic relationships. Infect Immun 68:4839–4849PubMedPubMedCentralCrossRefGoogle Scholar
  17. Eberl HJ, Parker DF, Van Loosdrecht M (2001) A new deterministic spatio-temporal continuum model for biofilm development. Comput Math Methods Med 3:161–175Google Scholar
  18. Emerenini BO, Hense BA, Kuttler C, Eberl HJ (2015) A mathematical model of quorum sensing induced biofilm detachment. PLoS ONE 10:e0132385PubMedPubMedCentralCrossRefGoogle Scholar
  19. Filgueiras L, Silva R, Almeida I, Vidal M, Baldani JI, Meneses CH (2019) Gluconacetobacter diazotrophicus mitigates drought stress in Oryza sativa L. Plant Soil 1–7Google Scholar
  20. Fysun O, Kern H, Wilke B, Langowski HC (2019) Evaluation of factors influencing dairy biofilm formation in filling hoses of food-processing equipment. Food Bioprod Process 113:39–48CrossRefGoogle Scholar
  21. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. ScientificaGoogle Scholar
  22. Hadla M, Halabi MA (2018) Effect of quorum sensing. In: Chormey DS, Bakırdere S, Turan NB, Engin GÖ (eds) Comprehensive analytical chemistry. Elsevier, Radarweg, Amsterdam, the Netherlands 81:95–116Google Scholar
  23. Jijón-Moreno S, Baca BE, Castro-Fernández DC, Ramírez-Mata A (2019) TyrR is involved in the transcriptional regulation of biofilm formation and D-alanine catabolism in Azospirillum brasilense Sp7. PLoS One 14:e0211904PubMedPubMedCentralCrossRefGoogle Scholar
  24. Kanchan A, Simranjit K, Ranjan K, Prasanna R, Ramakrishnan B, Singh MC, Hasan M, Shivay YS (2019) Microbial biofilm inoculants benefit growth and yield of chrysanthemum varieties under protected cultivation through enhanced nutrient availability. Plant Biosyst Int J Deal Aspect Plant Biol 153:306–316Google Scholar
  25. Kour D, Rana KL, Kumar A, Rastegari AA, Yadav N, Yadav AN, Gupta VK (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh BN, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, USA, pp 321–372CrossRefGoogle Scholar
  26. Kour D, Rana KL, Yadav AN, Yadav N, Kumar V, Kumar A, Sayyed RZ, Hesham AE-L, Dhaliwal HS, Saxena AK (2019b) Drought-tolerant phosphorus-solubilizing microbes: biodiversity and biotechnological applications for alleviation of drought stress in plants. In: Sayyed RZ, Arora NK, Reddy MS (eds) Plant growth promoting rhizobacteria for sustainable stress management: volume 1: rhizobacteria in abiotic stress management. Springer, Singapore, pp 255–308.  https://doi.org/10.1007/978-981-13-6536-2_13CrossRefGoogle Scholar
  27. Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2019c) Rhizospheric microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65.  https://doi.org/10.1007/978-981-13-7553-8_2CrossRefGoogle Scholar
  28. Kumar A, Patel JS, Meena VS, Srivastava R (2019a) Recent advances of PGPR based approaches for stress tolerance in plants for sustainable agriculture. Biocat Agricul Biotechnol 20:101271CrossRefGoogle Scholar
  29. Kumar M, Kour D, Yadav AN, Saxena R, Rai PK, Jyoti A, Tomar RS (2019b) Biodiversity of methylotrophic microbial communities and their potential role in mitigation of abiotic stresses in plants. Biologia 74:287–308.  https://doi.org/10.2478/s11756-019-00190-6CrossRefGoogle Scholar
  30. Kumawat KC, Sharma P, Sirari A, Singh I, Gill BS, Singh U, Saharan K (2019) Synergism of Pseudomonas aeruginosa (LSE-2) nodule endophyte with Bradyrhizobium sp. (LSBR-3) for improving plant growth, nutrient acquisition and soil health in soybean. World J Microbiol Biotech 35:47Google Scholar
  31. Laranjo M, Alexandre A, Oliveira S (2014) Legume growth-promoting rhizobia: an overview on the Mesorhizobium genus. Microbiol Res 169(1):2–17PubMedCrossRefGoogle Scholar
  32. Liu C, Mou L, Yi J, Wang J, Liu A, Yu J (2019) The Eno Gene of Burkholderia cenocepacia Strain 71-2 is involved in Phosphate Solubilization. Current Microbial 76:495–502CrossRefGoogle Scholar
  33. Mhatre PH, Karthik C, Kadirvelu K, Divya KL, Venkatasalam EP, Srinivasan S, Ramkumar G, Saranya C, Shanmuganathan R (2018) Plant growth promoting rhizobacteria (PGPR): a potential alternative tool for nematodes bio-control. Biocat Agricul Biotechnol 17:119–128CrossRefGoogle Scholar
  34. Molina-Santiago C, Pearson JR, Navarro Y, Berlanga-Clavero MV, Caraballo-Rodriguez AM, Petras D, García-Martín ML, Lamon G, Haberstein B, Cazorla FM, de Vicente A (2019) The extracellular matrix protects Bacillus subtilis colonies from Pseudomonas invasion and modulates plant co-colonization. Nat Commun 10:1919PubMedPubMedCentralCrossRefGoogle Scholar
  35. Olanrewaju OS, Ayangbenro AS, Glick BR, Babalola OO (2019) Plant health: feedback effect of root exudates-rhizobiome interactions. Appl Microbiol Biotechnol 103:1155–1166PubMedCrossRefGoogle Scholar
  36. Pandin C, Le Coq D, Canette A, Aymerich S, Briandet R (2017) Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microbial Biotech 10:719–734CrossRefGoogle Scholar
  37. Pedraza RO (2015) Siderophores production by Azospirillum: biological importance, assessing methods and biocontrol activity. In: Cassán FD, Okon Y, Creus CM (eds) Handbook for Azospirillum. Springer, Switzerland, pp 251–262Google Scholar
  38. Pérez-Velázquez J, Gölgeli M, García-Contreras R (2016) Mathematical modelling of bacterial quorum sensing: a review. Bull Math Biol 78:1585–1639PubMedCrossRefGoogle Scholar
  39. Pliego C, Kamilova F, Lugtenberg B (2011) Plant growth-promoting bacteria: fundamentals and exploitation. In: Maheshwari D (ed) Bacteria in agrobiology: crop ecosystems. Springer, Berlin, Heidelberg, pp 295–343CrossRefGoogle Scholar
  40. Prabhu N, Borkar S, Garg S (2019) Phosphate solubilization by microorganisms: overview, mechanisms, applications and advances. In: Meena SN (ed) Advances in biological science research, a practical approach. Academic Press, Elsevier, London, pp 161–176CrossRefGoogle Scholar
  41. Primo ED, Cossovich S, Giordano W (2019) A simple method to evaluate biofilm formation in exopolysaccharide-producing strains of Sinorhizobium meliloti. J Biol Edu 7:1–8CrossRefGoogle Scholar
  42. Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotech 28:142–149CrossRefGoogle Scholar
  43. Ramakrishna W, Yadav R, Li K (2019) Plant growth promoting bacteria in agriculture: two sides of a coin. Appl Soil Ecol 138:10–18CrossRefGoogle Scholar
  44. Rana KL, Kour D, Yadav AN (2019) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162Google Scholar
  45. Roy V, Adams BL, Bentley WE (2011) Developing next generation antimicrobials by intercepting AI-2 mediated quorum sensing. Enzyme Microbial Tech 49:113–123CrossRefGoogle Scholar
  46. Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29PubMedCrossRefGoogle Scholar
  47. Shahid M, Khan MS, Kumar M (2019) Kitazin-pea interaction: understanding the fungicide induced nodule alteration, cytotoxicity, oxidative damage and toxicity alleviation by Rhizobium leguminosarum. RSC Adv 9:16929–16947CrossRefGoogle Scholar
  48. Singh S, Singh SK, Chowdhury I, Singh R (2017) Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J 11:53PubMedPubMedCentralCrossRefGoogle Scholar
  49. Singh SK, Singh PP, Gupta A, Singh AK, Keshri J (2019) Tolerance of heavy metal toxicity using PGPR strains of Pseudomonas species. PGPR amelioration in sustainable agriculture, food security and environmental management. Woodhead Publishing, Elsevier, Duxford, pp 239–252CrossRefGoogle Scholar
  50. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, India, pp 117–143.  https://doi.org/10.1007/978-81-322-2647-5_7CrossRefGoogle Scholar
  51. Tabassum B, Khan A, Tariq M, Ramzan M, Khan MS, Shahid N, Aaliya K (2017) Bottlenecks in commercialisation and future prospects of PGPR. Appl Soil Ecol 121:102–117CrossRefGoogle Scholar
  52. Taktek S, St-Arnaud M, Piché Y, Fortin JA, Antoun H (2017) Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza 27:13–22PubMedCrossRefGoogle Scholar
  53. Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 9(8):49Google Scholar
  54. Tiwari S, Prasad V, Lata C (2019) Bacillus: plant growth promoting bacteria for sustainable agriculture and environment. New and future developments in microbial biotechnology and bioengineering—microbial biotechnology in agro-environmental sustainability. Elsevier, Radarweg, Amsterdam, the Netherlands, pp 43–55Google Scholar
  55. Vacheron J, Desbrosses G, Bouffaud ML, Touraine B, Moënne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dyé F, Prigent-Combaret C (2013) Plant growth-promoting rhizobacteria and root system functioning. Front Plant Sci 4:356PubMedPubMedCentralCrossRefGoogle Scholar
  56. Velmourougane K, Prasanna R, Saxena AK (2017) Agriculturally important microbial biofilms: present status and future prospects. J Basic Microbiol 57:548–573PubMedCrossRefGoogle Scholar
  57. Velmourougane K, Prasanna R, Chawla G, Nain L, Kumar A, Saxena AK (2019a) Trichoderma-Azotobacter biofilm inoculation improves soil nutrient availability and plant growth in wheat and cotton. J Basic Microbiol.  https://doi.org/10.1002/jobm.201900009CrossRefPubMedGoogle Scholar
  58. Velmourougane K, Prasanna R, Supriya P, Ramakrishnan B, Thapa S, Saxena AK (2019b) Transcriptome profiling provides insights into regulatory factors involved in Trichoderma viride-Azotobacter chroococcum biofilm formation. Microbiol Res 227:126292PubMedCrossRefGoogle Scholar
  59. Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A (2016) Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol 56:44–58PubMedPubMedCentralGoogle Scholar
  60. Verma P, Yadav AN, Khannam KS, Saxena AK, Suman A (2017a) Potassium-solubilizing microbes: diversity, distribution, and role in plant growth promotion. In: Panpatte DG, Jhala YK, Vyas RV, Shelat HN (eds) Microorganisms for green revolution: volume 1: microbes for sustainable crop production. Springer, Singapore, pp 125–149.  https://doi.org/10.1007/978-981-10-6241-4_7Google Scholar
  61. Verma P, Yadav AN, Kumar V, Singh DP, Saxena AK (2017b) Beneficial plant-microbes interactions: biodiversity of microbes from diverse extreme environments and its impact for crop improvement. In: Singh DP, Singh HB, Prabha R (eds) Plant-microbe interactions in agro-ecological perspectives: volume 2: microbial interactions and agro-ecological impacts. Springer, Singapore, pp 543–580.  https://doi.org/10.1007/978-981-10-6593-4_22Google Scholar
  62. Wang D, Xu A, Elmerich C, Ma LZ (2017) Biofilm formation enables free-living nitrogen-fixing rhizobacteria to fix nitrogen under aerobic conditions. ISME J 11(7):1602PubMedPubMedCentralCrossRefGoogle Scholar
  63. Whitehead KA, Verran J (2015) Formation, architecture and functionality of microbial biofilms in the food industry. Curr Opin Food Sci 2:84–91CrossRefGoogle Scholar
  64. Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4Google Scholar
  65. Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05Google Scholar
  66. Yadav AN (2019) Microbiomes of wheat (Triticum aestivum L.) endowed with multifunctional plant growth promoting attributes. EC Microbiol 15:1–6Google Scholar
  67. Yadav N, Yadav AN (2019) Actinobacteria for sustainable agriculture. J Appl Biotechnol Bioeng 6:38–41Google Scholar
  68. Yadav AN, Sachan SG, Verma P, Saxena AK (2015a) Prospecting cold deserts of north western Himalayas for microbial diversity and plant growth promoting attributes. J Biosci Bioeng 119:683–693PubMedPubMedCentralCrossRefGoogle Scholar
  69. Yadav AN, Sachan SG, Verma P, Tyagi SP, Kaushik R, Saxena AK (2015b) Culturable diversity and functional annotation of psychrotrophic bacteria from cold desert of Leh Ladakh (India). World J Microbiol Biotechnol 31:95–108PubMedPubMedCentralCrossRefGoogle Scholar
  70. Yadav AN, Sharma D, Gulati S, Singh S, Kaushik R, Dey R, Pal KK, Saxena AK (2015c) Haloarchaea endowed with phosphorus solubilization attribute implicated in phosphorus cycle. Sci Rep 5:12293PubMedPubMedCentralCrossRefGoogle Scholar
  71. Yadav AN, Sachan SG, Verma P, Saxena AK (2016) Bioprospecting of plant growth promoting psychrotrophic Bacilli from cold desert of north western Indian Himalayas. Indian J Exp Biol 54:142–150PubMedPubMedCentralGoogle Scholar
  72. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017a) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13CrossRefGoogle Scholar
  73. Yadav AN, Verma P, Kour D, Rana KL, Kumar V, Singh B, Chauahan VS, Sugitha T, Saxena AK, Dhaliwal HS (2017b) Plant microbiomes and its beneficial multifunctional plant growth promoting attributes. Int J Environ Sci Nat Resour 3:1–8.  https://doi.org/10.19080/IJESNR.2017.03.555601CrossRefGoogle Scholar
  74. Yadav AN, Verma P, Singh B, Chauhan VS, Suman A, Saxena AK (2017c) Plant growth promoting bacteria: biodiversity and multifunctional attributes for sustainable agriculture. Adv Biotechnol Microbiol 5:1–16Google Scholar
  75. Yadav AN, Gulati S, Sharma D, Singh RN, Rajawat MVS, Kumar R, Dey R, Pal KK, Kaushik R, Saxena AK (2019a) Seasonal variations in culturable archaea and their plant growth promoting attributes to predict their role in establishment of vegetation in Rann of Kutch. Biologia 74:1031–1043.  https://doi.org/10.2478/s11756-019-00259-2CrossRefGoogle Scholar
  76. Yadav AN, Yadav N, Sachan SG, Saxena AK (2019b) Biodiversity of psychrotrophic microbes and their biotechnological applications. J Appl Biol Biotechnol 7:99–108CrossRefGoogle Scholar
  77. Zhang F, Wang P, Zou YN, Wu QS, Kuča K (2019) Effects of mycorrhizal fungi on root-hair growth and hormone levels of taproot and lateral roots in trifoliate orange under drought stress. Arch Agron Soil Sci 65(9):1316–1330CrossRefGoogle Scholar
  78. Zhu J, Li M, Whelan M (2018) Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: a review. Sci Total Environ 612:522–537PubMedCrossRefGoogle Scholar
  79. Zhu X, Rice SA, Barraud N (2019) Nitric oxide and iron signalling cues have opposing effects on biofilm development in pseudomonas aeruginosa. Appl Environ Microbiol 85(3):e02175–18PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  2. 2.Department of MicrobiologyLovely Professional UniversityPhagwaraIndia

Personalised recommendations