Advertisement

Endophytic Microbes from Medicinal Plants and Their Secondary Metabolites for Agricultural Significances

  • Chanda V. Parulekar BerdeEmail author
  • Prachiti P. Rawool
  • Pallaval Veera Bramhachari
  • Vikrant B. Berde
Chapter
  • 65 Downloads
Part of the Sustainable Development and Biodiversity book series (SDEB, volume 25)

Abstract

Endophytes constitute an important component of microbial diversity since 20 years, remarkable progress in the field revealed the significance of endophytic microorganisms. Endophytic fungi are an unexplored group of organisms that has huge potential for innovative pharmaceutical substances; they are established as anticancer, antioxidants, antifungal, and anti-inflammatory. Likewise in recent years, incredible progress was made in developing them as therapeutic molecules against diverse ailments. In recent years, more studies are warranted in bioprospecting new endophytic microorganisms and their applications. Bacterial and fungal endophytes ubiquitously reside in internal tissue of living plants. Endophytic fungi distributed out from tropical region to arctic region, possess vast potential in terms of secondary metabolite production. It is pertinent to know that the various bioactive indispensable compounds evaluated by these endophytic fungi are host-specific. They are very significant in augmenting the adaptability of the endophyte and its host plants for instance biotic and abiotic stress tolerance. The ensuing effect is to produce metabolites either primary or secondary that are obliging for fungi themselves, the host plant in addition to the human race thereof. This chapter primarily emphasizes on the ecology, colonization, biodiversity, secondary metabolites from endophytic fungal cultures.

Keywords

Endophytic microbial diversity Medicinal plants Bioactive compounds Secondary metabolites 

Notes

Acknowledgements

The authors are grateful to their respective academic institutions for the support extended. The authors declare that they have no competing interests.

References

  1. Berde CV (2015) Bioprospecting of endophytes of medicinal plants. J Pharma Biol Sci 3:210–211Google Scholar
  2. Brooks DS, Gonzales CF, Appel DN, Filer TH (1994) Evaluation of endophytic bacteria as potential biological control agents for oak wilt. Biol Cont 4:373–381CrossRefGoogle Scholar
  3. Calhoun LA, Findlay JA, Miller DJ, Whitney NJ (1992) Metabolites toxic to spruce budworm from balsam fir needle endophytes. Mycological Res 96:281–286CrossRefGoogle Scholar
  4. Castillo UF, Strobel GA, Ford EJ, Hess WM, Porter H, Jensen JB, Albert H, Robinson R, Condron MA, Teplow DB, Stevens D, Yaver D (2002) Mumumbicins, wide spectrum antibiotics produced by Streptomyces NRRL 30562, endophytic on Kennedia nigriscans. Microbiology 148:2675–2685PubMedCrossRefGoogle Scholar
  5. Catalán AI, Ferreira F, Gill PR, Batista S (2007) Production of polyhydroxyalkanoates by Herbaspirillum seropedicae grown with different sole carbon sources and on lactose when engineered to express the lacZ, lacY genes. Enzyme Microbial Technol 40:1352–1367CrossRefGoogle Scholar
  6. Dai J, Krohn K, Flörke U, Draeger S, Schulz B, Kiss-Szikszai A (2006) Metabolites from the endophytic fungus Nodulisporium sp. from Juniperus cedrus. European J Org Chem 2006:3498–3506CrossRefGoogle Scholar
  7. Dai J, Krohn K, Draeger S, Schulz B (2009) New naphthalenechroman coupling products from the endophytic fungus, Nodulisporium sp. from Erica arborea. European J Org Chem 2009:1564–1569CrossRefGoogle Scholar
  8. Eyberger AL, Dondapati R, Porter JR (2006) Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prods 69:1121–1124CrossRefGoogle Scholar
  9. Findlay JA, Buthelezi S, Lavoie R, Rodriguez L (1995a) Bioactive isocoumarins and related metabolites from conifer endophytes. J Nat Prods 58:1759–1766CrossRefGoogle Scholar
  10. Findlay JA, Li G, Penner PE (1995b) Novel diterpenoid insect toxins from a conifer endophyte. J Nat Prods 58:197–200CrossRefGoogle Scholar
  11. Gangadevi V, Muthumary J (2008) Taxol, an anticancer drug produced by an endophytic fungus Bartalinia robillardoides Tassi, isolated from a medicinal plant, Aegle marmelos Correa ex Roxb. World J Microbiol Biotechnol 24:717–724CrossRefGoogle Scholar
  12. Gangadevi V, Muthumary J (2009a) Taxol production by Pestalotiopsis terminaliae, an endophytic fungus of Terminalia arjuna (arjun tree). Biotechnol Appl Biochem 158:675–684CrossRefGoogle Scholar
  13. Gangadevi V, Muthumary J (2009b) A novel endophytic taxol-producing fungus Chaetomella raphigera isolated from a medicinal plant, Terminalia arjuna. Biotechnol Appl Biochem 158:675–684CrossRefGoogle Scholar
  14. Gangadevi V, Murugan M, Muthumary J (2008) Taxol determination from Pestalotiopsis pauciseta, a fungal endophyte of a medicinal plant. Chin J Biotechnol 24:1433–1438CrossRefGoogle Scholar
  15. Gardner JM, Feldman AW, Zablotowicz RM (1982) Identity and behavior of xylem-residing bacteria in rough lemon roots of Florida citrus trees. Appl Environ Microbiol 43:1335–1342PubMedPubMedCentralCrossRefGoogle Scholar
  16. Grove JFJ (1985) Metabolic products of Phomopsis oblonga. Part 2. Phomopsolides A and B, tiglic esters of two 6-substituted 5,6-dihydo-5-hydroxypyran-2-ones. Chem Soc Perkin Trans 1:865–869CrossRefGoogle Scholar
  17. Guo B, Dai JR, Ng S, Huang Y, Leong C, Ong W, Carte BK (2000) Cytonic acids A and B: novel tridepside inhibiyors of hCMV protease from the endophytic fungus Cytonaema species. J Nat Prod 63:602–604PubMedCrossRefGoogle Scholar
  18. Gutiérrez-Zamora ML, Martínez-Romero E (2001) Natural endophytic association between Rhizobium etli and maize (Zea mays L.). J Biotechnol 91:117–126Google Scholar
  19. Harrison LH, Teplow DB, Rinaldi M, Strobel G (1991) Pseudomycins, a family of novel peptides from Pseudomonas syringae possessing broad spectrum antifungal activities. J Gen Microbiol 137:2857–2865PubMedCrossRefGoogle Scholar
  20. Hatakeyama T, Koseki T, Murayama T, Shiono Y (2010) Eremophilane sesquiterpenes from the endophyte Microdiplodia sp. KS 75-1 and revision of the stereochemistries of phomadecalins C and D. Phytochem Letts 3:148–151CrossRefGoogle Scholar
  21. Hoffmann JA, Reichhart JM (2002) Drosophila innate immunity: an evolutionary perspective. Nat Immunol 3:121–126PubMedCrossRefGoogle Scholar
  22. Hu ZY, Li YY, Huang YJ, Su WJ, Shen YM (2008) Three new sesquiterpenoids from Xylaria sp. NCY2. Helv Chim Acta 91:46–52CrossRefGoogle Scholar
  23. Jacobs MJ, Williams MB, David AG (1985) Innumeration, location, characterisation of endophytic bacteria within sugar beet roots. Can J Bot 63:1262–1265CrossRefGoogle Scholar
  24. Jalgaonwala RE, Mohite BV, Mahajan RT (2011) A review: natural products from plant associated endophytic fungi. J Microbiol Biotechnol Res 1(2):21–32 Scholar Research LibraryGoogle Scholar
  25. Kado CI (1992) Plant pathogenic bacteria. In Balous A, Truper HG, Dworkin M, Harder W, Schlerifer KH (eds) The prokaryotes, vol I. Springer, New York, pp 659–674Google Scholar
  26. Kalia VC, Chauhan A, Bhattacharyya G (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846PubMedCrossRefGoogle Scholar
  27. Khaled AS, Elkhateeb WA, Ahmed MT, El-Beih AA, Tahany MA, El-Diwany AI, Ahmed EF (2018) Antiviral and antioxidant potential of fungal endophytes of Egyptian medicinal plants. Fermentation 4:49–60CrossRefGoogle Scholar
  28. Kim JH, Choong HL (2009) Heptelidic acid, a sesquiterpene lactone, inhibits etoposide-induced apoptosis in human leukemia U937 cells. J Microbiol Biotechnol 19:787–791PubMedGoogle Scholar
  29. Kim S, Shin DS, Lee T, Oh KB (2004) Periconicins, two new fusicoccane diterpenes produced by an endophytic fungus Periconia sp. with antibacterial activity. J Nat Products 67:448–450CrossRefGoogle Scholar
  30. Kobayashi DY, Palumboo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker Inc, New York, pp 199–233Google Scholar
  31. Kour A, Shawl AS, Rehman S, Sultan P, Qazi PH, Suden P, Khajuria RK, Verma V (2008) Isolation and identification of an endophytic strain of Fusarium oxysporum producing podophyllotoxin from Juniperus recurva. World J Microbiol Biotechnol 24:1115–1121CrossRefGoogle Scholar
  32. Kour D, Rana KL, Kumar A, Rastegari AA, Yadav N, Yadav AN, Gupta VK (2019a) Extremophiles for hydrolytic enzymes productions: biodiversity and potential biotechnological applications. In: Molina G, Gupta VK, Singh BN, Gathergood N (eds) Bioprocessing for biomolecules production. Wiley, USA, pp 321–372CrossRefGoogle Scholar
  33. Kour D, Rana KL, Yadav N, Yadav AN, Kumar A, Meena VS, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2019b) Rhizospheric Microbiomes: biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In: Kumar A, Meena VS (eds) Plant growth promoting rhizobacteria for agricultural sustainability: from theory to practices. Springer, Singapore, pp 19–65.  https://doi.org/10.1007/978-981-13-7553-8_2CrossRefGoogle Scholar
  34. Kour D, Rana KL, Yadav N, Yadav AN, Singh J, Rastegari AA, Saxena AK (2019c) Agriculturally and industrially important fungi: current developments and potential biotechnological applications. In: Yadav AN, Singh S, Mishra S, Gupta A (eds) Recent advancement in white biotechnology through fungi. Volume 2: Perspective for value-added products and environments. Springer, Cham, pp 1–64.  https://doi.org/10.1007/978-3-030-14846-1_1Google Scholar
  35. Kumar AG, Antony RA, Kannan VR (2015) Exploration of endophytic microorganisms from selected medicinal plants and their control potential to multi drug resistant pathogen. J Med Plant Studies 3:49–57Google Scholar
  36. Kusari S, Lamshöft M, Spiteller M (2009) Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol 107:1019–1030PubMedCrossRefGoogle Scholar
  37. Lee JC, Strobel GA, Lobkovsky E, Clardy J (1996) Torreyanic acid: a selectively cytotoxic quinone dimer from the endophytic fungus. Pestalotiopsis microspora J Org Chem 61:3232–3233CrossRefGoogle Scholar
  38. Li JY, Strobel G, Sidhu R, Hess WM, Ford EJ (1996) Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiol 142:2223–2226CrossRefGoogle Scholar
  39. Liu Y, Luo J, Xu C, Ren F, Peng C, Wu G, Zhao J (2000) Purification, characterization, and molecular cloning of the gene of a seed-specific antimicrobial protein from pokeweed. Plant Physiol 122:1015–1024PubMedPubMedCentralCrossRefGoogle Scholar
  40. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, Mezgeay M, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21(6):583–606CrossRefGoogle Scholar
  41. Lu L, He J, Yu X, Li G, Zhang X (2006) Studies on isolation and identification of endophytic fungi strain SC13 from pharmaceutical plant Sabina vulgaris Ant. and metabolites. Acta Botany Boreal-Occident Sinica 15:85–89Google Scholar
  42. Marx J (2004) The roots of plant–microbe collaborations. Science 304:234–236PubMedCrossRefGoogle Scholar
  43. Moricca S, Ragazzi A (2008) Fungal endophytes in Mediterranean oak forest: a lesson from Discula Quercina. Phytopathol 98:380–386CrossRefGoogle Scholar
  44. Noble HM, Langley D, Sidebottom PJ, Lane SJ, Fisher PJ (1991) An echinocandin from an endophytic Cryptosporiopsis sp. and Pezicula sp. in Pinus sylvestris and Fagus sylvatica. Mycol Res 95:1439–1440CrossRefGoogle Scholar
  45. Park JH, Choi GJ, Lee SW, Lee HB, Kim KM, Jung HS, Jang KS, Cho KY, Kim JC (2005) Griseofulvin from Xylaria sp. strain F0010, an endophytic fungus of Abies holophylla and its antifungal activity against plant pathogenic fungi. J Microbiol Biotechnol 15:112–117Google Scholar
  46. Pelaez F, Cabello A, Platas G, Diez MT, Gonzalez del Val A, Basilio A, Martan I, Vicente F, Bills GF, Giacobbe RA, Schwartz RE, Onishi JC, Meinz MS, Abruzzo GK, Flattery AM, Kong L, Kurtz MB (2000) The discovery of enfumafungin, a novel antifungal compound produced by an endophytic Hormonema species biological activity and taxonomy of the producing organisms. Syst Appl Microbiol 23:333–343PubMedCrossRefGoogle Scholar
  47. Porras-Soriano A, Soriano-Martín ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359PubMedCrossRefGoogle Scholar
  48. Puri SC, Nazir A, Chawla R, Arora R, Riyaz-ul-Hasan S, Amna T, Ahmed B, Verma V, Singh S, Sagar R, Sharma A, Kumarc R, Sharma RK, Qazi GN (2006) The endophytic fungus Trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol 122:494–510PubMedCrossRefGoogle Scholar
  49. Rana KL, Kour D, Sheikh I, Dhiman A, Yadav N, Yadav AN, Rastegari AA, Singh K, Saxena AK (2019a) Endophytic fungi: biodiversity, ecological significance and potential industrial applications. In: Yadav AN, Mishra S, Singh S, Gupta A (eds) Recent advancement in white biotechnology through fungi, vol 1. Diversity and Enzymes Perspectives. Springer, Switzerland, pp 1–62Google Scholar
  50. Rana KL, Kour D, Sheikh I, Yadav N, Yadav AN, Kumar V, Singh BP, Dhaliwal HS, Saxena AK (2019b) Biodiversity of endophytic fungi from diverse niches and their biotechnological applications. In: Singh BP (ed) Advances in endophytic fungal research: present status and future challenges. Springer, Cham, pp 105–144.  https://doi.org/10.1007/978-3-030-03589-1_6CrossRefGoogle Scholar
  51. Rana KL, Kour D, Yadav AN (2019c) Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Res J Biotechnol 14:142–162Google Scholar
  52. Richardson SN, Walker AK, Nsiama TK, McFarlane J, Sumarah MW, Ibrahim A, Miller JD (2014) Griseofulvin-producing Xylaria endophytes of Pinus strobus and Vaccinium angustifolium: evidence for a conifer-understory species endophyte ecology. Fungal Ecol 11:107–113CrossRefGoogle Scholar
  53. Rosenblueth M, Martínez-Romero E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant-Microbe Interact 19:827–837PubMedCrossRefGoogle Scholar
  54. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9PubMedPubMedCentralCrossRefGoogle Scholar
  55. Schmeda-Hirschmann G, Hormazabal E, Rodriguez JA, Theoduloz C (2008) Cycloaspeptide A and pseurotin A from the endophytic fungus Penicillium janczewskii. Zeitschrift für Naturforschung C 63:383–388CrossRefGoogle Scholar
  56. Seto Y, Takahashi K, Matsura H, Kogami Y, Yada H, Yoshihara T, Nabita K (2007) Novel cyclic peptide Epichlicin from the endophytic fungus Epichloe typhin. Biosci Biotech Biochem 71:1470–1475CrossRefGoogle Scholar
  57. Settu S, Arunachalam S, Gayatri S (2010) Endophytic fungi: a review on pharmaceulogical activities and its industrial applications. Inter J Pharma Sci 53:82–89Google Scholar
  58. Stierle AA, Stierle DB (2000) Bioactive compounds from four endophytic Penicillium sp. isolated from the Northwest Pacific yew tree. In: Atta-Ur-Rahman (ed) Bioactive natural products, vol. 24. Elsevier Science, Amsterdam, pp 933–978Google Scholar
  59. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae an endophytic fungus of Pacific yew. Science 260:214–216PubMedCrossRefGoogle Scholar
  60. Stierle A, Stierle D, Strobel G, Bignami G, Grothaus P (1995) Bioactive metabolites of the endophytic fungi of Pacific yew, Taxus brevifolia: paclitaxel, taxanes, and other bioactive compounds. In: Georg GI, Chen TT, Ojima I, Vyas DM (eds) Taxane anticancer agents: basic science and current status. Washington, DC, p. 81–97. ACS Symposium Series 583Google Scholar
  61. Stierle DB, Stierle AA, Ganser B (1997) New phomopsolides from a Penicillium sp. J Nat Prod 60:1207–1209PubMedCrossRefGoogle Scholar
  62. Stierle A, Stierle DB, Bugni T (2001) Sequoiatones C-F, constituents of redwood endophyte Aspergillus parasiticus. J Nat Prod 64:1350–1353PubMedCrossRefGoogle Scholar
  63. Stierle DB, Stierle AA, Bugni T (2003) Sequoiamonascins A-D: novel anticancer metabolites isolated from a redwood endophyte. J Org Chem 68:4966–49699PubMedCrossRefGoogle Scholar
  64. Strobel GA, Stierle A, Stierle D (1993) Taxomyces andreanae, a proposed new taxon for a bulbilliferous hyphomycete associated with Pacific yew. Mycotaxon 47:71–78Google Scholar
  65. Strobel G, Yang X, Sears J, Kramer R, Sidhu RS, Hess WM (1996) Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 142:435–440PubMedPubMedCentralCrossRefGoogle Scholar
  66. Strobel GA, Torczynski R, Bollon A (1997) Acremonium sp.—aleucinostatin A producing endophyte of European yew (Taxus baccata). Plant Sci 128:97–108CrossRefGoogle Scholar
  67. Suman A, Yadav AN, Verma P (2016) Endophytic microbes in crops: diversity and beneficial impact for sustainable agriculture. In: Singh D, Abhilash P, Prabha R (eds) Microbial inoculants in sustainable agricultural productivity, research perspectives. Springer, India, pp 117–143.  https://doi.org/10.1007/978-81-322-2647-5_7CrossRefGoogle Scholar
  68. Sumarah MW, Kesting JR, Sorensen D, Miller JD (2011) Antifungal metabolites from fungal endophytes of Pinus strobus. Phytochem 72:1833–1837CrossRefGoogle Scholar
  69. Sun L, Lu Z, Bie X, Lu F, Yang S (2006) Isolation and characterization of a coproducer of fengycins and surfactins, endophytic Bacillus amyloliquefaciens ES-2, from Scutellaria baicalensis Georgi. World J Microbiol Biotechnol 22:1259–1266CrossRefGoogle Scholar
  70. Tanak Y, Shiomi K, Kamaei K, Sugoh-Hagino M, Enomoto Y, Fang F, Yamaguchi Y, Masuma R, Zhang CG, Zhang XW, Omura S (1998) Antimalarial activity of radicicol, heptelidic acid and other fungal metabolites. J Antibiotics 51:153–160CrossRefGoogle Scholar
  71. Taylor TN, Taylor EL (2000) The rhynie chert ecosystem, a model for understanding fungal interactions. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Decker Inc., New York, pp 31–48Google Scholar
  72. Vizioli J, Salzet M (2002) Antimicrobial peptides versus parasitic infections. Trends Parasitol 18:475–476PubMedCrossRefGoogle Scholar
  73. Wang J, Huang Y, Fang M, Zhang Y, Zheng Z, Zhao Y, Su W (2002) Brefeldin A a cytotoxin produced by Paecilomyces sp. and Aspergillus clavatus isolated from Taxus mairei and Torreya grandis. FEMS Immunol Med Microbiol 34:51–57PubMedCrossRefGoogle Scholar
  74. Wani MC, Taylor HL, Wall ME, Coggon P, McPhail AT (1971) Plant Antitumor Agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J Amer Chem Soc 93:2325–2327CrossRefGoogle Scholar
  75. Whitesides S, Spotts RA (1991) Susceptibility of pear cultivars to blossom blast caused by Pseudomonas syringae. Hortscience 26Google Scholar
  76. Wijeratne EMK, Paranagama PA, Marron MT, Gunatilaka MK, Arnold AE, Gunatilaka AAL (2008) Sesquiterpene quinones and related metabolites from Phyllosticta spinarum, a fungal strain endophytic in Platycladus orientalis, of the sonoran desert. J Nat Prod 71:218–222PubMedCrossRefGoogle Scholar
  77. Wilson D (1995) Endophyte: the evolution of a term, and clarification of its use and definition. Oikos 73:274–276CrossRefGoogle Scholar
  78. Xu R, Wang MZ, Lu CH, Zheng ZH, Shen YM (2009) Tuberculariols A-C, new sesquiterpenes from the mutant strain M-741 of Tubercularia sp. TF 5. Helv Chim Acta 92:1514–1519CrossRefGoogle Scholar
  79. Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1:1–4Google Scholar
  80. Yadav AN (2018) Biodiversity and biotechnological applications of host-specific endophytic fungi for sustainable agriculture and allied sectors. Acta Sci Microbiol 1:01–05Google Scholar
  81. Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2:85–88Google Scholar
  82. Yadav AN, Kumar R, Kumar S, Kumar V, Sugitha T, Singh B, Chauhan VS, Dhaliwal HS, Saxena AK (2017) Beneficial microbiomes: biodiversity and potential biotechnological applications for sustainable agriculture and human health. J Appl Biol Biotechnol 5:1–13CrossRefGoogle Scholar
  83. Yadav AN, Mishra S, Singh S, Gupta A (2019a) Recent advancement in white biotechnology through fungi. Volume 1: Diversity and enzymes perspectives. Springer, ChamGoogle Scholar
  84. Yadav AN, Singh S, Mishra S, Gupta A (2019b) Recent advancement in white biotechnology through fungi. Volume 2: Perspective for value-added products and environments. Springer, ChamGoogle Scholar
  85. Yadav AN, Singh S, Mishra S, Gupta A (2019c) Recent advancement in white biotechnology through fungi. Volume 3: Perspective for sustainable environments. Springer, ChamGoogle Scholar
  86. Zhou K, Qiao K, Edgar S, Stephanopoulos GPT (2015) Distributing a metabolic pathway among a microbial consortium enhances production of natural products. Nat Biotechnol 33:377–383PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Chanda V. Parulekar Berde
    • 1
    Email author
  • Prachiti P. Rawool
    • 1
  • Pallaval Veera Bramhachari
    • 2
  • Vikrant B. Berde
    • 3
  1. 1.Department of MicrobiologyGogate Jogalekar CollegeRatnagiriIndia
  2. 2.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  3. 3.Department of Zoology, Arts, Commerce and Science CollegeLanjaIndia

Personalised recommendations