Advertisement

Leisure and Cognitively Stimulating Activities as Means for Improving Cognitive Performance in Persons with Intellectual Disability During Adulthood

  • Hefziba Lifshitz
Chapter
  • 8 Downloads

Abstract

Engagement in leisure pursuits and cognitively stimulating activities during adulthood can serve as a means of enhancing the cognitive functioning and quality of life among adults with ID, in the short and long term. This chapter first presents cognitive activity theory, which emphasizes the effects of participating in cognitively stimulating activities for adults with typical development, and then reports on two studies that confirm the applicability of cognitive activity theory to populations with ID in the short term. Finally, utilization of leisure and cognitive activities is shown as a means for enhancing the cognition, affect, and behavior of adults with ID in line with the triple CAB model.

Keywords

Cognitive activity theory Leisure Recreation Cognitively stimulating activities Cognitive functioning 

References

  1. Ackerman, P. L., & Rolfhus, E. L. (1999). The locus of adult intelligence: Knowledge, abilities and nonability traits. Psychology and Aging, 14(2), 314–330.  https://doi.org/10.1037/0882-7974.14.2.314CrossRefPubMedGoogle Scholar
  2. Altman, D. G. (1999). Practical statistics for medical research. New York, NY: Chapman & Hall/CRC.Google Scholar
  3. Alzheimer’s Association. (2018). Alzheimer’s disease facts and figures. Alzheimer’s and Dementia, 14(3), 367–429.  https://doi.org/10.1016/j.jalz.2018.02.001CrossRefGoogle Scholar
  4. American Psychiatric Association [APA]. (2013). Diagnostic and statistical manual of mental disorders: DSM-5 (5th ed.). Washington, DC: Author.CrossRefGoogle Scholar
  5. Anderson, L. W., & Krathwohl, D. R. (2001). A taxonomy for learning, teaching, and assessing: A revision of Bloom's taxonomy of educational objectives. New York, NY: Longman.Google Scholar
  6. Arzouan, Y., Goldstein, A., & Faust, M. (2007). Dynamics of hemispheric activity during metaphor comprehension: Electrophysiological measures. NeuroImage, 36(1), 222–231.  https://doi.org/10.1016/j.neuroimage.2007.02.015CrossRefPubMedGoogle Scholar
  7. Azaiza, F., Croitoru, T., Rimmerman, A., & Naon, D. (2012). Participation in leisure activities of Jewish and Arab adults with intellectual disabilities living in the community. Journal of Leisure Research, 44(3), 379–391.  https://doi.org/10.1080/00222216.2012.11950270CrossRefGoogle Scholar
  8. Bayen, E., Possin, K. L., Chen, Y., Cleret de Langavant, L., & Yaffe, K. (2018). Prevalence of aging, dementia, and multimorbidity in older adults with Down syndrome. JAMA Neurology, 75(11), 1399–1406.  https://doi.org/10.1001/jamaneurol.2018.2210CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bergström, H., Hochwälder, J., Kottorp, A., & Elinder, L. S. (2013). Psychometric evaluation of a scale to assess satisfaction with life among people with intellectual disabilities living in community residences. Journal of Intellectual Disability Research, 57(3), 250–256.  https://doi.org/10.1111/j.1365-2788.2011.01531.xCrossRefPubMedGoogle Scholar
  10. Bustan, N., Lifshitz, H. & Shnitzer-Meirovich, S. (2018). Endogenous and exogenous factors as predictors of crystallized and fluid intelligence among adolescents and adults with Down syndrome. Manuscript submitted for publication.Google Scholar
  11. Cairns, N. J. (2001). Molecular neuropathology of transgenic mouse models of Down syndrome. In G. Lubec (Ed.), Protein expression in Down syndrome brain (pp. 289–301). Vienna, Austria: Springer.  https://doi.org/10.1007/978-3-7091-6262-0_24CrossRefGoogle Scholar
  12. Carmeli, E., Kessel, S., Coleman, R., & Ayalon, M. (2002). Effects of a treadmill walking program on muscle strength and balance in elderly people with Down syndrome. Journal of Gerontology: Series A. Biology Science and Medical Science, 57(2), 106–110.  https://doi.org/10.1093/gerona/57.2.m106CrossRefGoogle Scholar
  13. Chapman, R. S. (2006). Language learning in Down syndrome: The speech and language profile compared to adolescents with cognitive impairment of unknown origin. Down’s Syndrome Research and Practice, 10(2), 61–66.  https://doi.org/10.3104/reports.306CrossRefGoogle Scholar
  14. Chicoine, B., & McGuire, D. (1997). Longevity of a woman with Down syndrome: A case study. Mental Retardation, 35(6), 477–479.  https://doi.org/10.1352/0047-6765(1997)035<0477:LOAWWD>2.0.CO;2CrossRefPubMedGoogle Scholar
  15. Clare, L., McKenna, P. J., Mortimer, A. M., & Baddeley, A. D. (1993). Memory in schizophrenia: What is impaired and what is preserved? Neuropsychologia, 31(11), 1225–1241.  https://doi.org/10.1016/0028-3932(93)90070-GCrossRefPubMedGoogle Scholar
  16. Colcombe, S. J., Erickson, K. I., Scalf, P. E., Kim, J. S., Prakash, R., McAuley, E., … Kramer, A. F. (2006). Aerobic exercise training increases brain volume in aging humans. Journal of Gerontology: Series A. Biological Sciences and Medical Sciences, 61(11), 1166–1170.  https://doi.org/10.1093/gerona/61.11.1166CrossRefGoogle Scholar
  17. Cramer, S. C., Sur, M., Dobkin, B. H., O’Brien, C., Sanger, T. D., Trojanowski, J. Q., … Vinogradov, S. (2011). Harnessing neuroplasticity for clinical applications. Brain, 134(6), 1591–1609.  https://doi.org/10.1093/brain/awr039CrossRefPubMedPubMedCentralGoogle Scholar
  18. Das, J. P., & Mishra, R. K. (1995). Assessment of cognitive decline associated with aging: A comparison of individuals with Down syndrome and other etiologies. Research in Developmental Disabilities, 16(1), 11–25.  https://doi.org/10.1016/0891-4222(94)00032-5CrossRefPubMedGoogle Scholar
  19. Devenny, D. A., Krinsky-McHale, S. J., Sersen, G., & Silverman, W. P. (2000). Sequence of cognitive decline in dementia in adults with Down’s syndrome. Journal of Intellectual Disability Research, 44(6), 654–665.  https://doi.org/10.1111/j.1365-2788.2000.00305.xCrossRefPubMedGoogle Scholar
  20. Devenny, D. A., Silverman, W. P., Hill, A. L., Jenkins, E., Sersen, E. A., & Wisniewski, K. E. (1996). Normal ageing in adults with Down’s syndrome: A longitudinal study. Journal of Intellectual Disability Research, 40(3), 208–221.  https://doi.org/10.1111/j.1365-2788.1996.tb00624.xCrossRefPubMedGoogle Scholar
  21. Dunn, L. M., & Dunn, D. M. (1997). Peabody picture vocabulary test (3rd ed.). Circle Pines, MN: American Guidance Service.Google Scholar
  22. Duvdevany, I., & Arar, E. (2004). Leisure activities, friendships, and quality of life of persons with intellectual disability: Foster homes vs community residential settings. International Journal of Rehabilitation Research, 27(4), 289–296.CrossRefGoogle Scholar
  23. Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the USA, 108(7), 3017–3022.  https://doi.org/10.1073/pnas.1015950108CrossRefPubMedGoogle Scholar
  24. Feuerstein, R. (2003). Feuerstein’s theory of cognitive modifiability and mediated learning. In T. O. Seng, R. D. Parsons, S. L. Hinson, & D. S. Brown (Eds.), Educational psychology: A practitioner-researcher approach (pp. 59–60). Singapore, Singapore: Seng Lee.Google Scholar
  25. Feuerstein, R., & Falik, F. L. (2010). Learning to think, thinking to learn: A comparative analysis of three approaches to instruction. Journal of Cognitive Education and Psychology, 9(1), 4–20.  https://doi.org/10.1891/1945-8959.9.1.4CrossRefGoogle Scholar
  26. Feuerstein, R., & Rand, Y. (1974). Mediated learning experiences: An outline of the proximal etiology for differential development of cognitive functions. In L. Goldfien (Ed.), International understanding: Cultural differences in the development of cognitive processes (pp. 7–37). New York, NY: Guilford.Google Scholar
  27. Forehand, M. (2010). Bloom’s taxonomy. In M. Orey (Ed.), Emerging perspectives on learning, teaching and technology. Retrieved from https://textbookequity.org/Textbooks/Orey_Emergin_Perspectives_Learning.pdf
  28. Forehand, M. (2016). Bloom’s taxonomy. In P. Lombardi (Ed.), Instructional methods, strategies and technologies to meet the needs of all learners. Retrieved from https://granite.pressbooks.pub/teachingdiverselearners/chapter/blooms-taxonomy-2/
  29. Glanz, Y. (1989). Hahashiva ke’tifkud tlat-kivuni [Thinking and three-directional functioning]. Ramat Gan, Israel: Reches.Google Scholar
  30. Gooding, L. F., Abner, E. L., Jicha, G. A., Kryscio, R. J., & Schmitt, F. A. (2014). Musical training and late-life cognition. American Journal of Alzheimer’s Disease and Other Dementia, 29(4), 333–343.  https://doi.org/10.1177/1533317513517048CrossRefGoogle Scholar
  31. Hawkins, B. A., Eklund, S. J., James, D. R., & Foose, A. K. (2003). Adaptive behavior and cognitive function of adults with Down syndrome: Modeling change with age. Mental Retardation, 41(1), 7–28.  https://doi.org/10.1352/0047-6765(2003)041<0007:ABACFO>2.0.CO;2CrossRefPubMedGoogle Scholar
  32. Head, K., Lott, I. T., Patterson, D., Doran, E., & Haier, R. J. (2007). Possible compensatory events in adults with Down syndrome brain prior to Alzheimer disease neuropathology: Target for nonpharmacological intervention. Journal of Alzheimer’s Disease, 11(1), 61–76.  https://doi.org/10.3233/JAD-2007-11110CrossRefPubMedGoogle Scholar
  33. Heller, T. (2017). Service and support needs of adults aging with intellectual/developmental disabilities – Testimony to the U.S. Senate Committee on Aging Working and Aging with Disabilities: From school to retirement. Retrieved from https://www.aging.senate.gov/imo/media/doc/SCA_Heller_10_25_17.pdf
  34. Heller, T., Miller, A. B., Hsieh, K., & Sterns, H. (2000). Later-life planning: Promoting knowledge of options and choice-making. Mental Retardation, 38(5), 395–406.  https://doi.org/10.1352/0047-6765(2000)038<0395:LPPKOO>2.0.CO;2CrossRefPubMedGoogle Scholar
  35. Heller, T., Scott, H. M., & Janicki, M. (2018). Caregiving, intellectual disability, and dementia: Report of the Summit Workgroup on Caregiving and Intellectual and Developmental Disabilities. Alzheimer’s & Dementia, 4, 272–282.  https://doi.org/10.1016/j.trci.2018.06.002CrossRefGoogle Scholar
  36. Herrera, A. P., Meeks, T. W., Dawes, S. E., Hernandez, D. M., Thompson, W. K., Sommerfeld, D. H., & Jeste, D. V. (2011). Emotional and cognitive health correlates of leisure activities in older Latino and Caucasian women. Psychology, Health & Medicine, 16(6), 661–674.  https://doi.org/10.1080/13548506.2011.555773CrossRefGoogle Scholar
  37. Horn, J. L., & Cattell, R. B. (1967). Age differences in fluid and crystallized intelligence. Acta Psychologica, 26(2), 107–129.  https://doi.org/10.1016/0001-6918(67)90011-XCrossRefPubMedGoogle Scholar
  38. Ihle, A., Oris, M., Fagot, D., Baeriswyl, M., Guichard, E., & Kliegel, M. (2015). The association of leisure activities in middle adulthood with cognitive performance in old age: The moderating role of educational level. Gerontology, 61(6), 543–550.  https://doi.org/10.1159/000381311CrossRefPubMedGoogle Scholar
  39. Janicki, M. P., & Dalton, A. J. (2000). Prevalence of dementia and impact on intellectual disability services. Mental Retardation, 38(2), 276–288.  https://doi.org/10.1352/0047-6765(2000)038<0276:PODAIO>2.0.CO;2CrossRefPubMedGoogle Scholar
  40. Janicki, M. P., Dalton, A. J., Henderson, C. M., & Davidson, P. W. (1999). Mortality and morbidity among older adults with intellectual disability: Health services considerations. Disability and Rehabilitation, 21(5–6), 284–294.  https://doi.org/10.1080/096382899297710CrossRefPubMedGoogle Scholar
  41. Kasirer, A., & Mashal, N. (2014). Verbal creativity in autism: Comprehension and generation of metaphoric language in high-functioning autism spectrum disorder and typical development. Frontiers in Human Neuroscience, 8.  https://doi.org/10.3389/fnhum.2014.00615
  42. Kaufman, A. S. (2001). WAIS-III IQs, Horn’s theory, and generational changes from young adulthood to old age. Intelligence, 29(2), 131–167.  https://doi.org/10.1016/S0160-2896(00)00046-5CrossRefGoogle Scholar
  43. Kavé, G., Kukulansky-Segal, D., Avraham, A., Herzberg, O., & Landa, J. (2010). Searching for the right word: Performance on four word-retrieval tasks across childhood. Child Neuropsychology, 16(6), 549–563.  https://doi.org/10.1080/09297049.2010.485124CrossRefPubMedGoogle Scholar
  44. Keil, F. C. (1986). Conceptual domains and the acquisition of metaphor. Cognitive Development, 1(1), 73–96.  https://doi.org/10.1016/S0885-2014(86)80024-7CrossRefGoogle Scholar
  45. Kim, E. Y., & Kim, K. W. (2014). A theoretical framework for cognitive and non-cognitive interventions for older adults: Stimulation versus compensation. Aging and Mental Health, 18(3), 304–315.  https://doi.org/10.1080/13607863.2013.868404CrossRefPubMedGoogle Scholar
  46. Kim, J., Schillinga, M. L., Kim, M., & Han, A. (2016). Contribution of leisure satisfaction, acceptance disability and social relationship to life satisfaction among Korean individuals with intellectual disability. Journal of Mental Health Research in Intellectual Disabilities, 9(3), 157–170.  https://doi.org/10.1080/19315864.2016.1182237CrossRefGoogle Scholar
  47. Kimura, K., Obuchi, S., Arai, T., Nagasawa, H., Shiba, Y., Watanabe, S., & Kojima, M. (2010). The influence of short-term strength training on health-related quality of life and executive cognitive function. Journal of Physiological Anthropology, 29(3), 95–101.  https://doi.org/10.2114/jpa2.29.95CrossRefPubMedGoogle Scholar
  48. Kogan, N., Connor, K., Gross, A., & Fava, D. (1980). Understanding visual metaphor: Developmental and individual differences. Monographs of the Society for Research in Child Development, 45(1, Serial No. 183), 1–78.  https://doi.org/10.2307/1165832
  49. Krinsky-McHale, S. J., Devenny, D. A., Gu, H., Jenkins, E. C., Kittler, P., Murty, V. V., … Silverman, W. (2008). Successful aging in a 70-year-old man with Down syndrome: A case study. Intellectual and Developmental Disabilities, 46(3), 215–228.  https://doi.org/10.1352/2008.46:215-228CrossRefPubMedGoogle Scholar
  50. Lachman, M. E., Agrigoroaei, S., Murphy, C., & Tun, P. A. (2010). Frequent cognitive activity compensates for education differences in episodic memory. American Journal of Geriatric Psychiatry, 18(1), 4–10.  https://doi.org/10.1097/JGP.0b013e3181ab8b62CrossRefPubMedGoogle Scholar
  51. Landis, J. R., & Koch, G. G. (1977). The measurement of observer agreement for categorical data. Biometrics, 33(1), 159–174.  https://doi.org/10.2307/2529310CrossRefGoogle Scholar
  52. Lezak, M. D., Howieson, D. B., & Loring, D. W. (2004). Neuropsychological assessment (4th ed.). New York, NY: Oxford University Press.Google Scholar
  53. Lifshitz, H. (2002). Later life planning program: A pre-test assessment in Israel. Journal of Gerontological Social Work, 37(3–4), 87–103.  https://doi.org/10.1300/J083v37n03_07CrossRefGoogle Scholar
  54. Lifshitz, H., & Klein, P. S. (2011). Mediation between staff and elderly persons with intellectual disability with Alzheimer disease as a means of enhancing their daily functioning. Education and Training in Autism and Developmental Disabilities, 46(1), 106–115.Google Scholar
  55. Lifshitz, H., Klein, P. S., & Fridel Cohen, S. (2010). Effects of MISC intervention on cognition, autonomy, and behavioral functioning of adult consumers with severe intellectual disability. Research in Developmental Disabilities, 31(4), 881–894.  https://doi.org/10.1016/j.ridd.2010.02.012CrossRefPubMedGoogle Scholar
  56. Lifshitz, H., Merrick, J., & Morad, M. (2008). Health status and ADL functioning of older persons with intellectual disability: Community residence versus residential care centers. Research in Developmental Disabilities, 29(4), 301–315.  https://doi.org/10.1016/j.ridd.2007.06.005CrossRefPubMedGoogle Scholar
  57. Lifshitz, H., & Rand, Y. (1999). Cognitive modifiability in adult and older people with mental retardation. Mental Retardation, 37(2), 125–138.  https://doi.org/10.1352/0047-6765(1999)037<0125:CMIAAO>2.0.CO;2CrossRefPubMedGoogle Scholar
  58. Lifshitz, H., & Tzuriel, D. (2004). Durability of effects of instrumental enrichment in adults with intellectual disabilities. Journal of Cognitive Education and Psychology, 3(3), 297–322.  https://doi.org/10.1891/194589504787382992CrossRefGoogle Scholar
  59. Lifshitz, H., Tzuriel, D., & Weiss, I. (2005). Effects of training in conceptual versus perceptual analogies among adolescents and adults with intellectual disability. Journal of Cognitive Education and Psychology, 5(2), 144–170.  https://doi.org/10.1891/194589505787382504CrossRefGoogle Scholar
  60. Lifshitz, H., Weiss, I., Tzuriel, D., & Tzemach, M. (2011). New model of mapping difficulties in solving analogical problems among adolescents and adults with intellectual disability. Research in Developmental Disabilities, 32(1), 326–344.  https://doi.org/10.1016/j.ridd.2010.10.010CrossRefPubMedGoogle Scholar
  61. Lifshitz-Vahav, H. (2015). Compensation Age Theory (CAT): Effect of chronological age on individuals with intellectual disability. Education and Training in Autism and Developmental Disabilities, 50(2), 142–154.Google Scholar
  62. Lifshitz-Vahav, H., Shnitzer, S., & Mashal, N. (2016). Participation in recreation and cognitive activities as a predictor of cognitive performance of adults with/without Down syndrome. Aging & Mental Health, 20(9), 955–964.  https://doi.org/10.1080/13607863.2015.1047322CrossRefGoogle Scholar
  63. Lifshitz-Vahav, H., Shrira, A., & Bodner, E. (2017). The reciprocal relationship between participation in leisure activities and cognitive functioning: The moderating effect of self-rated literacy level. Aging & Mental Health, 21(5), 524–531.  https://doi.org/10.1080/13607863.2015.1124838CrossRefGoogle Scholar
  64. Mahncke, H. W., Connor, B. B., Appelman, J., Ahsanuddin, O. N., Hardy, J. L., Wood, R. A., … Merzenich, M. M. (2006). Memory enhancement in healthy older adults using a brain plasticity-based training program: A randomized, controlled study. Proceedings of the National Academy of Sciences of the USA, 103(33), 12523–12528.  https://doi.org/10.1073/pnas.0605194103CrossRefPubMedGoogle Scholar
  65. Marquinea, M. J., Segawa, E., Wilson, R. S., Bennett, D. A., & Barnes, L. L. (2012). Association between cognitive activity and cognitive function in older Hispanics. Journal of the International Neuropsychological Society, 18(2), 1041–1051.  https://doi.org/10.1017/S135561771200080XCrossRefGoogle Scholar
  66. Mashal, N., & Kasirer, A. (2011). Thinking maps enhance metaphoric competence in children with autism and learning disabilities. Research in Developmental Disabilities, 32(6), 2045–2054.  https://doi.org/10.1016/j.ridd.2011.08.012CrossRefPubMedGoogle Scholar
  67. McGrew, K. S. (2009). CHC theory and the human cognitive abilities project: Standing on the shoulders of the giants of psychometric intelligence research. Intelligence, 37(1), 1–10.  https://doi.org/10.1016/j.intell.2008.08.004CrossRefGoogle Scholar
  68. Melbøe, L., & Ytterhus, B. (2017). Disability leisure: In what kind of activities, and when and how do youths with intellectual disabilities participate? Journal Scandinavian Journal of Disability Research, 9(3), 245–255.  https://doi.org/10.1080/15017419.2016.1264467CrossRefGoogle Scholar
  69. Muscari, A., Giannoni, C., Pierpaoli, L., Berzigotti, A., Maietta, P., Foschi, E., … Zoli, M. (2010). Chronic endurance exercise training prevents aging-related cognitive decline in healthy older adults: A randomized controlled trial. International Journal of Geriatric Psychiatry, 25(10), 1055–1064.  https://doi.org/10.1002/gps.2462CrossRefPubMedGoogle Scholar
  70. Netz, Y., Tomer, R., Axelrad, S., Argov, E., & Inbar, O. (2007). The effect of a single aerobic training session on cognitive flexibility in late middle-aged adults. International Journal of Sports Medicine, 28(1), 82–87.  https://doi.org/10.1055/s-2006-924027CrossRefPubMedGoogle Scholar
  71. Optale, G., Urgesi, C., Busato, V., Marin, S., Piron, L., Priftis, K., … Bordin, A. (2010). Controlling memory impairment in elderly adults using virtual reality memory training: A randomized controlled pilot study. Neurorehabilitation and Neural Repair, 24(4), 348–357.  https://doi.org/10.1177/1545968309353328CrossRefPubMedGoogle Scholar
  72. Paas, F. G. W. C., van Merriënboer, J. J. G., & Adam, J. J. (1994). Measurement of cognitive load in instructional research. Perceptual and Motor Skills, 79(1), 419–430.  https://doi.org/10.2466/pms.1994.79.1.419CrossRefPubMedGoogle Scholar
  73. Patterson, I., & Pegg, S. (2009). Serious leisure and people with intellectual disabilities: Benefits and opportunities. Leisure Studies, 28(4), 387–402.  https://doi.org/10.1080/02614360903071688CrossRefGoogle Scholar
  74. Phillips, C. (2017). Lifestyle modulators of neuroplasticity: How physical activity, mental engagement, and diet promote cognitive health during aging. Neural Plasticity.  https://doi.org/10.1155/2017/3589271
  75. Piaget, J. (1970). Piaget’s theory. In P. Mussen (Ed.), Carmichael’s manual of child psychology (3rd ed., pp. 103–128). New York, NY: Wiley.Google Scholar
  76. Prince, M., Acosta, D., Chiu, H., Scazufca, M., & Varghese, M. (2003). Dementia diagnosis in developing countries: A cross-cultural validation study. Lancet, 361(9361), 909–917.  https://doi.org/10.1016/S0140-6736(03)12772-9CrossRefPubMedGoogle Scholar
  77. Raven, J., Raven, J. C., & Court, J. H. (1998). Manual for Raven’s progressive matrices and vocabulary scales: Section 3. Standard progressive matrices. Oxford, UK: Oxford Psychologists Press.Google Scholar
  78. Raven, J. C., Court, J. H., & Raven, J. (1983). Manual for Raven’s progressive matrices and vocabulary scales: Advanced progressive matrices sets I and II. London, UK: H. K. Lewis.Google Scholar
  79. Raven, J. C., Court, J. H., & Raven, J. (1986). Manual for Raven’s progressive matrices and vocabulary scales. Oxford, UK: Oxford Psychologists Press.Google Scholar
  80. Reitan, R. M., & Davison, L. A. (1974). Clinical neuropsychology: Current status and applications. New York, NY: Wiley.Google Scholar
  81. Sajeev, G., Weuve, J., Jackson, J. W., VanderWeele, T. J., Bennett, D. A., Grodstein, F., & Blacker, D. (2016). Late-life cognitive activity and dementia: A systematic review and bias analysis. Epidemiology, 27(5), 732–742.  https://doi.org/10.1097/EDE.0000000000000513CrossRefPubMedPubMedCentralGoogle Scholar
  82. Salthouse, T. A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507–514.  https://doi.org/10.1016/j.neurobiolaging.2008.09.023CrossRefPubMedPubMedCentralGoogle Scholar
  83. Shnitzer-Meirovich, S., Lifshitz, H., & Mashal, N. (2018). Enhancing the comprehension of visual metaphors in individuals with intellectual disability with or without Down syndrome. Research in Developmental Disabilities, 74, 113–123.  https://doi.org/10.1016/j.ridd.2018.01.010CrossRefPubMedGoogle Scholar
  84. Soubelet, A. (2011). Engaging in cultural activities compensates for educational differences in cognitive abilities. Neuropsychology, Development and Cognition: Series B. Aging, Neuropsychology and Cognition, 18(5), 516–526.  https://doi.org/10.1080/13825585.2011.598913CrossRefGoogle Scholar
  85. Spearman, C. (1927). The abilities of man: Their nature and measurement. Oxford, UK: Macmillan.Google Scholar
  86. Spector, A., Orrell, M., & Woods, B. (2010). Cognitive Stimulation Therapy (CST): Effects on different areas of cognitive function for people with dementia. International Journal of Geriatrtic Psychiatry, 25(12), 1253–1258.  https://doi.org/10.1002/gps.2464CrossRefGoogle Scholar
  87. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet. Neurology, 11(11), 1006–1012.  https://doi.org/10.1016/S1474-4422(12)70191-6CrossRefPubMedPubMedCentralGoogle Scholar
  88. Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K. E., Hilton, J., … van Heertum, R. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15(4), 394–402.  https://doi.org/10.1093/cercor/bhh142CrossRefPubMedGoogle Scholar
  89. Tzuriel, D. (2011a). Mediated learning and cognitive modifiability. In N. M. Seel (Ed.), Encyclopedia of sciences learning (pp. 2154–2157). New York, NY: Springer.Google Scholar
  90. Tzuriel, D. (2011b). Mediators of learning. In N. M. Seel (Ed.), Encyclopedia of sciences learning (pp. 2157–2161). New York, NY: Springer.Google Scholar
  91. Tzuriel, D. (2013a). Dynamic assessment of learning potential. In M. Mo & C. Mok (Eds.), Self-directed learning oriented assessments in the Asia-Pacific (pp. 235–255). Dordrecht: Springer, The Netherlands.Google Scholar
  92. Tzuriel, D. (2013b). Mediated learning experience and cognitive modifiability. Journal of Cognitive Educational Psychology, 12(1), 59–81.  https://doi.org/10.1891/1945-8959.12.1.59CrossRefGoogle Scholar
  93. Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence (WASI™). San Antonio, TX: Psychological Corporation.Google Scholar
  94. Wechsler, D. (2001). Mivchan inteligenzia le’mevugarim – Girsa ivrit [WAIS-IIIHEB: Manual of administration and scoring]. Jerusalem, Israel: PsychTech.Google Scholar
  95. Whitehurst, G. J., & Lonigan, C. J. (1998). Child development and emergent literacy. Child Development, 69(3), 848–872.  https://doi.org/10.1111/j.1467-8624.1998.tb06247.xCrossRefPubMedGoogle Scholar
  96. Wilson, R. S., Barnes, L. L., Aggarwal, N. T., Boyle, P. A., Hebert, L. E., Mendes de Leon, C. F., & Evans, D. A. (2010). Cognitive activity and the cognitive morbidity of Alzheimer disease. Neurology, 75(11), 990–996.  https://doi.org/10.1212/WNL.0b013e3181f25b5eCrossRefPubMedPubMedCentralGoogle Scholar
  97. Wilson, R. S., Barnes, L. L., & Bennett, D. A. (2003). Assessment of lifetime participation in cognitively stimulating activities. Journal of Clinical and Experimental Neuropsychology, 25(5), 634–642.  https://doi.org/10.1076/jcen.25.5.634.14572CrossRefPubMedGoogle Scholar
  98. Wilson, R. S., Barnes, L. L., Krueger, K. R., Hoganson, G., Bienias, J. L., & Bennett, D. A. (2005). Early and late life cognitive activity and cognitive systems in old age. Journal of the International Neuropsychological Society, 11(4), 400–407.  https://doi.org/10.1017/S1355617705050459CrossRefPubMedGoogle Scholar
  99. Wilson, R. S., & Bennett, D. A. (2003). Cognitive activity and risk of Alzheimer’s disease. Current Directions in Psychological Science, 12(3), 87–91.  https://doi.org/10.1111/1467-8721.01236CrossRefGoogle Scholar
  100. Wilson, R. S., & Bennett, D. A. (2005). Assessment of cognitive decline in old age with brief tests amenable to telephone administration. Neuroepidemiology, 25(1), 19–25.  https://doi.org/10.1159/000085309CrossRefPubMedGoogle Scholar
  101. Wilson, R. S., Mendes de Leon, C. F., Barnes, L., Schneider, J. A., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2002). Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA, 287(6), 742–748.  https://doi.org/10.1001/jama.287.6.742CrossRefPubMedGoogle Scholar
  102. Winocur, G., Craik, F. I. M., Levine, B., Robertson, I. H., Binns, M. A., Alexander, M. P., … Stuss, D. T. (2007). Cognitive rehabilitation in the elderly: Overview and future directions. Journal of the International Neuropsychological Society, 13(1), 166–171.  https://doi.org/10.1017/S1355617707070191CrossRefPubMedGoogle Scholar
  103. Wiseman, F. K., Al-Janabi, T., Hardy, J., Karmiloff-Smith, A., Nizetic, D., Tybulewicz, V. L., … Strydom, A. (2015). A genetic cause of Alzheimer disease: Mechanistic insights from Down syndrome. Nature Reviews. Neuroscience, 16(9), 564–574.  https://doi.org/10.1038/nrn3983CrossRefPubMedPubMedCentralGoogle Scholar
  104. Wolfensberger, W. (2002). Social role valorization and, or versus, ‘empowerment’. Mental Retardation, 40(3), 252–258.  https://doi.org/10.1352/0047-6765(2002)040<0252:SRVAOV>2.0.CO;2CrossRefPubMedGoogle Scholar
  105. World Health Organization [WHO]. (2018, January 18). Disability and health. Retrieved from https://www.who.int/news-room/fact-sheets/detail/disability-and-health
  106. Yates, L. A., Ziser, S., Spector, A., & Orrel, M. (2016). Cognitive leisure activities and future risk of cognitive impairment and dementia: Systematic review and meta-analysis. International Psychogeriatrics, 8(11), 1791–1806.  https://doi.org/10.1017/S1041610216001137CrossRefGoogle Scholar
  107. Zhu, Q. B., Bao, A. M., Swaab, D., & Neurosci, B. (2019). Activation of the brain to postpone dementia: A concept originating from postmortem human brain studies. Neuroscience Bulletin, 35(2), 253–266.  https://doi.org/10.1007/s12264-019-00340-5CrossRefPubMedGoogle Scholar
  108. Zigman, W., Schupf, N., Zigman, A., & Silverman, W. (1993). Aging and Alzheimer disease in people with mental retardation. International Review of Research in Mental Retardation, 19, 41–70.  https://doi.org/10.1016/S0074-7750(08)60188-3CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Hefziba Lifshitz
    • 1
  1. 1.Head of MA Program in Intellectual Disability, School of EducationBar-Ilan UniversityRamat GanIsrael

Personalised recommendations