Advertisement

Investigating Impact-Activated Fronts with Ultrasound

  • Endao Han
Chapter
  • 23 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. By measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and by imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behavior. Based on these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions.

References

  1. 8.
    M.E. Cates, J.P. Wittmer, J.P. Bouchaud, P. Claudin, Jamming force chains and fragile matter. Phys. Rev. Lett. 81(9), 4 (1998)Google Scholar
  2. 25.
    N.Y. Lin, B.M. Guy, M. Hermes, C. Ness, J. Sun, W.C. Poon, I. Cohen, Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115(22), 228304 (2015)Google Scholar
  3. 26.
    C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68(1), 011306 (2003)Google Scholar
  4. 27.
    D. Bi, J. Zhang, B. Chakraborty, R.P. Behringer, Jamming by shear. Nature 480(7377), 355–358 (2011)ADSCrossRefGoogle Scholar
  5. 28.
    I.R. Peters, S. Majumdar, H.M. Jaeger, Direct observation of dynamic shear jamming in dense suspensions. Nature 532(7598), 214–217 (2016)ADSCrossRefGoogle Scholar
  6. 29.
    N. Kumar, S. Luding, Memory of jamming–multiscale models for soft and granular matter. Granul. Matter 18(3), 58 (2016)Google Scholar
  7. 33.
    N. Fernandez, R. Mani, D. Rinaldi, D. Kadau, M. Mosquet, H. Lombois-Burger, J. Cayer-Barrioz, H.J. Herrmann, N.D. Spencer, L. Isa, Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys. Rev. Lett. 111(10), 108301 (2013)Google Scholar
  8. 35.
    J.R. Royer, D.L. Blair, S.D. Hudson, Rheological signature of frictional interactions in shear thickening suspensions. Phys. Rev. Lett. 116(18), 188301 (2016)Google Scholar
  9. 38.
    R. Seto, R. Mari, J.F. Morris, M.M. Denn, Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111(21), 218301 (2013)Google Scholar
  10. 40.
    C. Ness, J. Sun, Shear thickening regimes of dense non-Brownian suspensions. Soft Matter 12(3), 914–924 (2016)ADSCrossRefGoogle Scholar
  11. 41.
    A. Singh, R. Mari, M.M. Denn, J.F. Morris, A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62(2), 457–468 (2018)ADSCrossRefGoogle Scholar
  12. 42.
    S. Sarkar, D. Bi, J. Zhang, J. Ren, R.P. Behringer, B. Chakraborty, Shear-induced rigidity of frictional particles: analysis of emergent order in stress space. Phys. Rev. E 93(4), 042901 (2016)Google Scholar
  13. 43.
    M. Wyart, M.E. Cates, Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112(9), 098302 (2014)Google Scholar
  14. 47.
    N.M. James, E. Han, R.A.L. de la Cruz, J. Jureller, H.M. Jaeger, Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 17(11), 965–970 (2018)ADSCrossRefGoogle Scholar
  15. 50.
    B.M. Guy, M. Hermes, W.C. Poon, Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett. 115(8), 088304 (2015)Google Scholar
  16. 54.
    S.R. Waitukaitis, H.M. Jaeger, Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 487(7406), 205–209 (2012)ADSCrossRefGoogle Scholar
  17. 55.
    M. Roche, E. Myftiu, M.C. Johnston, P. Kim, H.A. Stone, Dynamic fracture of nonglassy suspensions. Phys. Rev. Lett. 110(14), 148304 (2013)Google Scholar
  18. 59.
    I.R. Peters, H.M. Jaeger, Quasi-2d dynamic jamming in cornstarch suspensions: visualization and force measurements. Soft Matter 10(34), 6564–6570 (2014)ADSCrossRefGoogle Scholar
  19. 60.
    S.R. Waitukaitis, L.K. Roth, V. Vitelli, H.M. Jaeger, Dynamic jamming fronts. Europhys. Lett. 102(4), 44001 (2013)Google Scholar
  20. 63.
    S. Manneville, L. Bécu, A. Colin, High-frequency ultrasonic speckle velocimetry in sheared complex fluids. Eur. Phys. J. Appl. Phys. 28(3), 361–373 (2004)ADSCrossRefGoogle Scholar
  21. 64.
    T. Gallot, C. Perge, V. Grenard, M.A. Fardin, N. Taberlet, S. Manneville, Ultrafast ultrasonic imaging coupled to rheometry: principle and illustration. Rev. Sci. Instrum. 84(4), 045107 (2013)Google Scholar
  22. 65.
    X. Jia, C. Caroli, B. Velicky, Ultrasound propagation in externally stressed granular media. Phys. Rev. Lett. 82(9), 1863–1866 (1999)ADSCrossRefGoogle Scholar
  23. 66.
    Y. Khidas, X. Jia, Anisotropic nonlinear elasticity in a spherical-bead pack: influence of the fabric anisotropy. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 81(2 Pt 1), 021303 (2010)Google Scholar
  24. 69.
    R.S.C. Cobbold, Foundations of Biomedical Ultrasound (Oxford University Press, Oxford, 2007)Google Scholar
  25. 72.
    R.J. Urick, A sound velocity method for determining the compressibility of finely divided substances. J. Appl. Phys. 18(11), 983 (1947)Google Scholar
  26. 92.
    E. Han, I.R. Peters, H.M. Jaeger, High-speed ultrasound imaging in dense suspensions reveals impact-activated solidification due to dynamic shear jamming. Nat. Commun. 7, 12243 (2016)ADSCrossRefGoogle Scholar
  27. 93.
    O.E. Petel, S. Ouellet, J. Loiseau, D.L. Frost, A.J. Higgins, A comparison of the ballistic performance of shear thickening fluids based on particle strength and volume fraction. Int. J. Impact Eng. 85, 83–96 (2015)CrossRefGoogle Scholar
  28. 94.
    E.J. Windhab, B. Ouriev, Rheological study of concentrated suspensions in pressure-driven shear flow using a novel in-line ultrasound Doppler method. Exp. Fluids 32(2), 204–211 (2002)CrossRefGoogle Scholar
  29. 96.
    B. Saint-Michel, H. Bodiguel, S. Meeker, S. Manneville, Simultaneous concentration and velocity maps in particle suspensions under shear from rheo-ultrasonic imaging. Phys. Rev. Appl. 8(1), 014023 (2017)Google Scholar
  30. 97.
    D.J. McClements, M.J.W. Povey, Ultrasound velocity as a probe. Adv. Colloid Interf. Sci. 27, 285–316 (1987)CrossRefGoogle Scholar
  31. 98.
    E. Han, M. Wyart, I.R. Peters, H.M. Jaeger, Shear fronts in shear-thickening suspensions. Phys. Rev. Fluids 3(7), 073301 (2018)Google Scholar
  32. 99.
    V. Vitelli, M. van Hecke, Marginal matters. Nature 480, 325–326 (2011)ADSCrossRefGoogle Scholar
  33. 100.
    J.G. Ramsay, M.I. Huber, The Techniques of Modern Structural Geology, vol. 1, 1st edn. (Academic, Cambridge, 1983)Google Scholar
  34. 101.
    E. Han, L. Zhao, N. Van Ha, S.T. Hsieh, D.B. Szyld, H.M. Jaeger, Dynamic jamming of dense suspensions under tilted impact. Phys. Rev. Fluids 4, 063304 (2019)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Endao Han
    • 1
  1. 1.Joseph Henry Laboratories of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations