• Endao Han
Part of the Springer Theses book series (Springer Theses)


In our daily lives, most materials we see are in one of the three states of matter: solid, liquid, or gas. When a material in one state is broken up into small particles and mixed with material in another state, rich and interesting phenomena can happen. For example, the air is so “soft” that most of the time one can hardly feel its existence. However, when many air bubbles are distributed in water, the foam that forms develops a rigidity that can hold its shape against gravity. Another famous example of such mixtures is a suspension of hard cornstarch particles in water, which is sometimes referred to as the “Oobleck” in Dr. Seuss’ stories. One striking behavior of this solid-liquid mixture is that it flows like a viscous fluid under normal conditions, but solidifies under a sudden impact. The transition is so dramatic that people can jog or jump on the surface of such mixtures. When they stop moving, the material can no longer support their weight, and they slowly sink in. This reversible, dynamic fluid-solid transition is the main focus of this thesis.


  1. 1.
    H.A. Barnes, J.F. Hutton, K. Walters, An Introduction to Rheology (Elsevier, Amsterdam, 1989)zbMATHGoogle Scholar
  2. 2.
    L.D. Landau, E.M. Lifshitz, Theory of Elasticity, 2nd edn. (Pergamon Press, Oxford, 1970)zbMATHGoogle Scholar
  3. 3.
    D.J. Acheson, Elementary Fluid Dynamics (Oxford University Press, Oxford, 2005)zbMATHGoogle Scholar
  4. 4.
    A. Einstein, A new determination of the molecular dimensions. Ann. Phys. 19, 289–306 (1906)CrossRefGoogle Scholar
  5. 5.
    G.K. Batchelor, The effect of Brownian motion on the bulk stress in a suspension of spherical particles. J. Fluid Mech. 83(01), 97 (1977)Google Scholar
  6. 6.
    R.C. Ball, P. Richmond, Dynamics of colloidal dispersions. Phys. Chem. Liq. 9(2), 99–116 (1980)CrossRefGoogle Scholar
  7. 7.
    A.J. Liu, S.R. Nagel, Jamming is not just cool any more. Nature 396(6706), 21–22 (1998)ADSCrossRefGoogle Scholar
  8. 8.
    M.E. Cates, J.P. Wittmer, J.P. Bouchaud, P. Claudin, Jamming force chains and fragile matter. Phys. Rev. Lett. 81(9), 4 (1998)Google Scholar
  9. 9.
    S.H. Maron, P.E. Pierce, Application of ree-eyring generalized flow theory to suspensions of spherical particles. J. Colloid Sci. 11, 80–95 (1956)CrossRefGoogle Scholar
  10. 10.
    I.M. Krieger, T.J. Dougherty, A mechanism for non-Newtonian flow in suspensions of rigid spheres. Trans. Soc. Rheol. 3(1), 137–152 (1959)CrossRefGoogle Scholar
  11. 11.
    J.F. Brady, The rheological behavior of concentrated colloidal dispersions. J. Chem. Phys. 99(1), 567–581 (1993)ADSCrossRefGoogle Scholar
  12. 12.
    H.M. Shewan, J.R. Stokes, Analytically predicting the viscosity of hard sphere suspensions from the particle size distribution. J. Non-Newtonian Fluid Mech. 222, 72–81 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    E. Brown, H.M. Jaeger, Shear thickening in concentrated suspensions: phenomenology, mechanisms and relations to jamming. Rep. Prog. Phys. 77(4), 046602 (2014)Google Scholar
  14. 14.
    V. Trappe, V. Prasad, L. Cipelletti, P.N. Segre, D.A. Weitz, Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    E. Brown, N.A. Forman, C.S. Orellana, H. Zhang, B.W. Maynor, D.E. Betts, J.M. DeSimone, H.M. Jaeger, Generality of shear thickening in dense suspensions. Nat. Mater. 9(3), 220–224 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    B.J. Maranzano, N.J. Wagner, The effects of particle size on reversible shear thickening of concentrated colloidal dispersions. J. Chem. Phys. 114(23), 10514–10527 (2001)ADSCrossRefGoogle Scholar
  17. 17.
    X. Cheng, J.H. McCoy, J.N. Israelachvili, I. Cohen, Imaging the microscopic structure of shear thinning and thickening colloidal suspensions. Science 333, 1276–1279 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    E. Brown, H.M. Jaeger, Through thick and thin. Science 333, 1230–1231 (2011)ADSCrossRefGoogle Scholar
  19. 19.
    N.J. Wagner, J.F. Brady, Shear thickening in colloidal dispersions. Phys. Today 62(10), 27–32 (2009)CrossRefGoogle Scholar
  20. 20.
    J.F. Brady, G. Bossis, The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation. J. Fluid Mech. 155, 105 (1985)ADSCrossRefGoogle Scholar
  21. 21.
    J.F. Brady, G Bossis, Stokesian dynamics. Annu. Rev. Fluid Mech. 20, 111 (1988)ADSCrossRefGoogle Scholar
  22. 22.
    H.A. Barnes, Shear-thickening (“dilatancy”) in suspensions of nonaggregating solid particles dispersed in Newtonian liquids. J. Rheol. 33(2), 329 (1989)Google Scholar
  23. 23.
    E. Brown, H.M. Jaeger, The role of dilation and confining stresses in shear thickening of dense suspensions. J. Rheol. 56(4), 875 (2012)Google Scholar
  24. 24.
    Q. Xu, S. Majumdar, E. Brown, H.M. Jaeger, Shear thickening in highly viscous granular suspensions. Europhys. Lett. 107(6), 68004 (2014)Google Scholar
  25. 25.
    N.Y. Lin, B.M. Guy, M. Hermes, C. Ness, J. Sun, W.C. Poon, I. Cohen, Hydrodynamic and contact contributions to continuous shear thickening in colloidal suspensions. Phys. Rev. Lett. 115(22), 228304 (2015)Google Scholar
  26. 26.
    C.S. O’Hern, L.E. Silbert, A.J. Liu, S.R. Nagel, Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68(1), 011306 (2003)Google Scholar
  27. 27.
    D. Bi, J. Zhang, B. Chakraborty, R.P. Behringer, Jamming by shear. Nature 480(7377), 355–358 (2011)ADSCrossRefGoogle Scholar
  28. 28.
    I.R. Peters, S. Majumdar, H.M. Jaeger, Direct observation of dynamic shear jamming in dense suspensions. Nature 532(7598), 214–217 (2016)ADSCrossRefGoogle Scholar
  29. 29.
    N. Kumar, S. Luding, Memory of jamming–multiscale models for soft and granular matter. Granul. Matter 18(3), 58 (2016)Google Scholar
  30. 30.
    W. Zheng, H. Liu, N. Xu, Shear-induced solidification of athermal systems with weak attraction. Phys. Rev. E 94(6), 062608 (2016)Google Scholar
  31. 31.
    E. DeGiuli, G. Düring, E. Lerner, M. Wyart, Unified theory of inertial granular flows and non-Brownian suspensions. Phys. Rev. E 91(6), 062206 (2015)Google Scholar
  32. 32.
    E. Lerner, G. Düring, M. Wyart, A unified framework for non-Brownian suspension flows and soft amorphous solids. Proc. Natl. Acad. Sci. 109(13), 4798–4803 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    N. Fernandez, R. Mani, D. Rinaldi, D. Kadau, M. Mosquet, H. Lombois-Burger, J. Cayer-Barrioz, H.J. Herrmann, N.D. Spencer, L. Isa, Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys. Rev. Lett. 111(10), 108301 (2013)Google Scholar
  34. 34.
    F. Boyer, E. Guazzelli, O. Pouliquen, Unifying suspension and granular rheology. Phys. Rev. Lett. 107(18), 188301 (2011)Google Scholar
  35. 36.
    J. Comtet, G. Chatte, A. Nigues, L. Bocquet, A. Siria, A. Colin, Pairwise frictional profile between particles determines discontinuous shear thickening transition in non-colloidal suspensions. Nat. Commun. 8, 15633 (2017)ADSCrossRefGoogle Scholar
  36. 37.
    C. Clavaud, A. Berut, B. Metzger, Y. Forterre, Revealing the frictional transition in shear-thickening suspensions. Proc. Natl. Acad. Sci. 114(20), 5147–5152 (2017)ADSCrossRefGoogle Scholar
  37. 38.
    R. Seto, R. Mari, J.F. Morris, M.M. Denn, Discontinuous shear thickening of frictional hard-sphere suspensions. Phys. Rev. Lett. 111(21), 218301 (2013)Google Scholar
  38. 41.
    A. Singh, R. Mari, M.M. Denn, J.F. Morris, A constitutive model for simple shear of dense frictional suspensions. J. Rheol. 62(2), 457–468 (2018)ADSCrossRefGoogle Scholar
  39. 42.
    S. Sarkar, D. Bi, J. Zhang, J. Ren, R.P. Behringer, B. Chakraborty, Shear-induced rigidity of frictional particles: analysis of emergent order in stress space. Phys. Rev. E 93(4), 042901 (2016)Google Scholar
  40. 43.
    M. Wyart, M.E. Cates, Discontinuous shear thickening without inertia in dense non-Brownian suspensions. Phys. Rev. Lett. 112(9), 098302 (2014)Google Scholar
  41. 44.
    C. Song, P. Wang, H.A. Makse, A phase diagram for jammed matter. Nature 453(7195), 629–632 (2008)ADSCrossRefGoogle Scholar
  42. 45.
    L.C. Hsiao, S. Jamali, E. Glynos, P.F. Green, R.G. Larson, M.J. Solomon, Rheological state diagrams for rough colloids in shear flow. Phys. Rev. Lett. 119(15), 158001 (2017)Google Scholar
  43. 46.
    C.P. Hsu, S.N. Ramakrishna, M. Zanini, N.D. Spencer, L. Isa, Roughness-dependent tribology effects on discontinuous shear thickening. Proc. Natl. Acad. Sci. 115(20), 5117–5122 (2018)ADSCrossRefGoogle Scholar
  44. 47.
    N.M. James, E. Han, R.A.L. de la Cruz, J. Jureller, H.M. Jaeger, Interparticle hydrogen bonding can elicit shear jamming in dense suspensions. Nat. Mater. 17(11), 965–970 (2018)ADSCrossRefGoogle Scholar
  45. 48.
    M. Trulsson, E. DeGiuli, M. Wyart, Effect of friction on dense suspension flows of hard particles. arXiv preprint arXiv:1606.07650 (2016)Google Scholar
  46. 49.
    F. Blanc, F. Peters, E. Lemaire, Local transient rheological behavior of concentrated suspensions. J. Rheol. 55(4), 835–854 (2011)ADSCrossRefGoogle Scholar
  47. 50.
    B.M. Guy, M. Hermes, W.C. Poon, Towards a unified description of the rheology of hard-particle suspensions. Phys. Rev. Lett. 115(8), 088304 (2015)Google Scholar
  48. 51.
    Z. Pan, H. de Cagny, B. Weber, D. Bonn, S-shaped flow curves of shear thickening suspensions: direct observation of frictional rheology. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 92(3), 032202 (2015)Google Scholar
  49. 52.
    B. Liu, M. Shelley, J. Zhang, Focused force transmission through an aqueous suspension of granules. Phys. Rev. Lett. 105(18), 188301 (2010)Google Scholar
  50. 53.
    S. von Kann, J.H. Snoeijer, D. Lohse, D. van der Meer, Nonmonotonic settling of a sphere in a cornstarch suspension. Phys. Rev. E 84(6), 060401 (2011)Google Scholar
  51. 54.
    S.R. Waitukaitis, H.M. Jaeger, Impact-activated solidification of dense suspensions via dynamic jamming fronts. Nature 487(7406), 205–209 (2012)ADSCrossRefGoogle Scholar
  52. 57.
    B. Allen, B. Sokol, S. Mukhopadhyay, R. Maharjan, E. Brown, System-spanning dynamically jammed region in response to impact of cornstarch and water suspensions. Phys. Rev. E 97(5), 052603 (2018)Google Scholar
  53. 58.
    M.I. Smith, R. Besseling, M.E. Cates, V. Bertola, Dilatancy in the flow and fracture of stretched colloidal suspensions. Nat. Commun. 1, 114 (2010)ADSCrossRefGoogle Scholar
  54. 59.
    I.R. Peters, H.M. Jaeger, Quasi-2d dynamic jamming in cornstarch suspensions: visualization and force measurements. Soft Matter 10(34), 6564–6570 (2014)ADSCrossRefGoogle Scholar
  55. 60.
    S.R. Waitukaitis, L.K. Roth, V. Vitelli, H.M. Jaeger, Dynamic jamming fronts. Europhys. Lett. 102(4), 44001 (2013)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Endao Han
    • 1
  1. 1.Joseph Henry Laboratories of PhysicsPrinceton UniversityPrincetonUSA

Personalised recommendations