Advertisement

IL-21 Signaling in the Tumor Microenvironment

  • Ghita Chabab
  • Nathalie Bonnefoy
  • Virginie LafontEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1240)

Abstract

IL-21 is an immunomodulatory cytokine produced by natural killer (NK) cells and T cells that has pleiotropic roles in immune and nonimmune cells. IL-21 can modulate innate and specific immunity activities. It is a potent stimulator of T and natural killer cell-mediated antitumor immunity but also has pro-inflammatory functions in many tissues and is involved in oncogenesis. It is important to understand IL-21 biology in these different situations to ensure the maximal benefit of therapeutic strategies targeting this cytokine. This chapter summarizes IL-21 characteristics and signaling, its role in immune system components, and its use in cancer immunotherapies.

Keywords

Cytokine Immune cells Lymphocytes Myeloid cells Tumor microenvironment Antitumor activity Pro-tumoral activity Signaling pathways γc Cytokine family JAK-STAT pathways PI3-kinase pathway ERK pathway Transcription factors Regulation 

References

  1. 1.
    Rosenberg SA (2014) IL-2: the first effective immunotherapy for human cancer. J Immunol 192:5451.  https://doi.org/10.4049/jimmunol.1490019CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Spolski R, Leonard WJ (2014) Interleukin-21: a double-edged sword with therapeutic potential. Nat Rev Drug Discov 13:379.  https://doi.org/10.1038/nrd4296CrossRefPubMedGoogle Scholar
  3. 3.
    Søndergaard H, Skak K (2009) IL-21: roles in immunopathology and cancer therapy. Tissue Antigens 74:467–479CrossRefGoogle Scholar
  4. 4.
    Habib T, Senadheera S, Weinberg K, Kaushansky K (2002) The common γ chain (γc) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry 41:8725.  https://doi.org/10.1021/bi0202023CrossRefPubMedGoogle Scholar
  5. 5.
    Parrish-Novak J et al (2000) Interleukin 21 and its receptor are involved in NK cell expansion and regulation of lymphocyte function. Nature 408:57.  https://doi.org/10.1038/35040504CrossRefPubMedGoogle Scholar
  6. 6.
    Zeng R et al (2007) The molecular basis of IL-21-mediated proliferation. Blood 109:4135.  https://doi.org/10.1182/blood-2006-10-054973CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Wan C-K et al (2015) Opposing roles of STAT1 and STAT3 in IL-21 function in CD4 + T cells. Proc Natl Acad Sci 112:9394–9399CrossRefGoogle Scholar
  8. 8.
    Konjević GM, Vuletić AM, Mirjačić Martinović KM, Larsen AK, Jurišić VB (2019) The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine 117:30–40CrossRefGoogle Scholar
  9. 9.
    Brady J, Hayakawa Y, Smyth MJ, Nutt SL (2014) IL-21 induces the functional maturation of murine NK cells. J Immunol 172:2048–2058CrossRefGoogle Scholar
  10. 10.
    Skak K, Frederiksen KS, Lundsgaard D (2008) Interleukin-21 activates human natural killer cells and modulates their surface receptor expression. Immunology 123:575–583CrossRefGoogle Scholar
  11. 11.
    Strengell M et al (2003) IL-21 in synergy with IL-15 or IL-18 enhances IFN- production in human NK and T cells. J Immunol 170:5464–5469CrossRefGoogle Scholar
  12. 12.
    Park YK et al (2012) Interleukin-21 increases direct cytotoxicity and IFN-γ production of ex vivo expanded nk cells towards breast cancer cells. Anticancer Res 32:839–846PubMedGoogle Scholar
  13. 13.
    McMichael EL et al (2017) Activation of the FcgammaReceptorIIIa on human natural killer cells leads to increased expression of functional interleukin-21 receptor. Oncoimmunology 6:1–10CrossRefGoogle Scholar
  14. 14.
    Roda JM et al (2014) Interleukin-21 enhances NK cell activation in response to antibody-coated targets. J Immunol 177:120–129CrossRefGoogle Scholar
  15. 15.
    Burgess SJ, Marusina AI, Pathmanathan I, Borrego F, Coligan JE (2014) IL-21 Down-regulates NKG2D/DAP10 expression on human NK and CD8+ T cells. J Immunol 176:1490–1497CrossRefGoogle Scholar
  16. 16.
    Good KL, Bryant VL, Tangye SG (2014) Kinetics of human B cell behavior and amplification of proliferative responses following stimulation with IL-21. J Immunol 177:5236–5247CrossRefGoogle Scholar
  17. 17.
    Wang SP et al (2015) Amplification of IL-21 signalling pathway through bruton’s tyrosine kinase in human B cell activation. Rheumatology (Oxford) 54:1488.  https://doi.org/10.1093/rheumatology/keu532CrossRefGoogle Scholar
  18. 18.
    Diehl SA et al (2008) STAT3-mediated up-regulation of BLIMP1 is coordinated with BCL6 down-regulation to control human plasma cell differentiation. J Immunol 180:4805–4815CrossRefGoogle Scholar
  19. 19.
    Jin H, Carrio R, Yu A, Malek TR (2014) Distinct activation signals determine whether IL-21 induces B cell costimulation, growth arrest, or Bim-dependent apoptosis. J Immunol 173:657–665CrossRefGoogle Scholar
  20. 20.
    Ding BB, Bi E, Chen H, Yu JJ, Ye BH (2013) IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol 190:1827.  https://doi.org/10.4049/jimmunol.1201678CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Pene J et al (2014) Cutting edge: IL-21 is a switch factor for the production of IgG1 and IgG3 by human B cells. J Immunol 172:5154–5157CrossRefGoogle Scholar
  22. 22.
    Iwata Y et al (2011) Characterization of a rare IL-10-competent B-cell subset in humans that parallels mouse regulatory B10 cells. Blood 117:530.  https://doi.org/10.1182/blood-2010-07-294249CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Yoshizaki A et al (2012) Regulatory B cells control T-cell autoimmunity through IL-21-dependent cognate interactions. Nature 491:264.  https://doi.org/10.1038/nature11501CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Peluso I et al (2014) IL-21 counteracts the regulatory T cell-mediated suppression of human CD4+ T lymphocytes. J Immunol 178:732–739CrossRefGoogle Scholar
  25. 25.
    Wei L, Laurence A, Elias KM, O’Shea JJ (2007) IL-21 is produced by Th17 cells and drives IL-17 production in a STAT3-dependent manner. J Biol Chem 282:34605.  https://doi.org/10.1074/jbc.M705100200CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Zeng R et al (2005) Synergy of IL-21 and IL-15 in regulating CD8 + T cell expansion and function. J Exp Med 201:139.  https://doi.org/10.1084/jem.20041057CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sutherland APR et al (2013) IL-21 promotes CD8+ CTL activity via the transcription factor T-bet. J Immunol 190:3977.  https://doi.org/10.4049/jimmunol.1201730CrossRefPubMedGoogle Scholar
  28. 28.
    Alves NL, Arosa FA, van Lier RAW (2014) IL-21 sustains CD28 expression on IL-15-activated human naive CD8+ T cells. J Immunol 175:755–762CrossRefGoogle Scholar
  29. 29.
    Casey KA, Mescher MF (2007) IL-21 promotes differentiation of naive CD8 T cells to a unique effector phenotype. J Immunol 178:7640–7648CrossRefGoogle Scholar
  30. 30.
    Attridge K et al (2012) IL-21 inhibits T cell IL-2 production and impairs Treg homeostasis. Blood 119:4656.  https://doi.org/10.1182/blood-2011-10-388546CrossRefPubMedGoogle Scholar
  31. 31.
    Gowda A et al (2010) Differential effects of IL-2 and IL-21 on expansion of the CD4 +CD25+Foxp3+ T regulatory cells with redundant roles in natural killer cell mediated antibody dependent cellular cytotoxicity in chronic lymphocytic leukemia. MAbs 2:35–41CrossRefGoogle Scholar
  32. 32.
    Kim-Schulze S, Kim HS, Fan Q, Kim DW, Kaufman HL (2009) Local IL-21 promotes the therapeutic activity of effector T cells by decreasing regulatory T cells within the tumor microenvironment. Mol Ther 17:380–388CrossRefGoogle Scholar
  33. 33.
    Kannappan V et al (2017) Interleukin 21 inhibits cancer-mediated FOXP3 induction in naïve human CD4 T cells. Cancer Immunol Immunother 66:637.  https://doi.org/10.1007/s00262-017-1970-6CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Thedrez A et al (2009) IL-21-mediated potentiation of antitumor cytolytic and proinflammatory responses of human V 9V 2 T cells for adoptive immunotherapy. J Immunol 182:3423–3431CrossRefGoogle Scholar
  35. 35.
    Bansal RR, Mackay CR, Moser B, Eberl M (2012) IL-21 enhances the potential of human γδ T cells to provide B-cell help. Eur J Immunol 42:110.  https://doi.org/10.1002/eji.201142017CrossRefPubMedGoogle Scholar
  36. 36.
    Caccamo N et al (2012) IL-21 regulates the differentiation of a human γδ T cell subset equipped with B cell helper activity. PLoS One 7:e41940.  https://doi.org/10.1371/journal.pone.0041940CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Barjon C et al (2017) IL-21 promotes the development of a CD73-positive Vγ9Vδ2 T cell regulatory population. Oncoimmunology 7:1–11Google Scholar
  38. 38.
    Brandt K, Bulfone-Paus S, Foster DC, Rückert R (2003) Interleukin-21 inhibits dendritic cell activation and maturation. Blood 102:4090.  https://doi.org/10.1182/blood-2003-03-0669CrossRefPubMedGoogle Scholar
  39. 39.
    Stolfi C et al (2011) Involvement of interleukin-21 in the regulation of colitis-associated colon cancer. J Exp Med 208:2279–2290CrossRefGoogle Scholar
  40. 40.
    De Simone V et al (2015) Interleukin-21 sustains inflammatory signals that contribute to sporadic colon tumorigenesis. Oncotarget 6:9908CrossRefGoogle Scholar
  41. 41.
    Ma H-L et al (2003) IL-21 activates both innate and adaptive immunity to generate potent antitumor responses that require Perforin but are independent of IFN-gamma. J Immunol 171:608–615CrossRefGoogle Scholar
  42. 42.
    Di Carlo E et al (2014) IL-21 induces tumor rejection by specific CTL and IFN- -dependent CXC chemokines in syngeneic mice. J Immunol 172:1540–1547CrossRefGoogle Scholar
  43. 43.
    De Totero D et al (2006) Interleukin-21 receptor (IL-21R) is up-regulated by CD40 triggering and mediates proapoptotic signals in chronic lymphocytic leukemia B cells. Blood 107:3708–3715CrossRefGoogle Scholar
  44. 44.
    Gelebart P et al (2009) Interleukin-21 effectively induces apoptosis in mantle cell lymphoma through a STAT1-dependent mechanism. Leukemia 23:1836–1846CrossRefGoogle Scholar
  45. 45.
    Timmerman JM et al (2012) A phase I dose-finding trial of recombinant interleukin-21 and rituximab in relapsed and refractory low grade B-cell lymphoproliferative disorders. Clin Cancer Res 18:5752.  https://doi.org/10.1158/1078-0432.CCR-12-0456CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bhatia S et al (2014) Recombinant interleukin-21 plus sorafenib for metastatic renal cell carcinoma: a phase 1/2 study. J Immunother Cancer 2:1–11CrossRefGoogle Scholar
  47. 47.
    Petrella TM et al (2012) Interleukin-21 has activity in patients with metastatic melanoma: a phase II study. J Clin Oncol 30:3396.  https://doi.org/10.1200/JCO.2011.40.0655CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ghita Chabab
    • 1
  • Nathalie Bonnefoy
    • 1
  • Virginie Lafont
    • 1
    Email author
  1. 1.IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de MontpellierMontpellierFrance

Personalised recommendations