Interleukin-8 in the Tumor Immune Niche: Lessons from Comparative Oncology

  • Jong-Hyuk KimEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1240)


Interleukin (IL)-8 is a chemokine that is essential for inflammation and angiogenesis. IL-8 expression is elevated in tumor cell lines and tissues, as well as in peripheral blood obtained from cancer patients. Primary works have attempted to determine the biological effect of IL-8 on tumor cells, including cell proliferation, survival, and migration. More recently, IL-8 has acquired considerable attention as an immune modulator in the context of certain tumor microenvironments (TME); specifically, it can support a niche that favors tumor progression and metastasis. Tumor-derived IL-8 stimulates inflammation by interacting with the microenvironmental constituents, including fibroblasts, endothelial cells, and immune cells. However, the tumor immune system is complex, and mechanisms that construct the immune phenotype remain incompletely characterized. Herein, we will (1) address a potential role of IL-8 in regulating gene expression to establish immune landscape in tumor. Then, we will (2) review IL-8 signaling in the maintenance of stem cells and regulation of hematopoietic progenitors. Finally, (3) IL-8 functions will be discussed in naturally occurring animal cancers that offer a clinically realistic model for translational research. This chapter will provide a new insight into the tumor immune niche and help us develop immunotherapies for cancers.


Angiogenesis Canine Comparative oncology Cytokine Hemangiosarcoma Hematopoiesis Immune landscape Immunity Inflammation Interleukin-8 Microenvironment Niche Stem cells Tumor 


  1. 1.
    Lippitz BE (2013) Cytokine patterns in patients with cancer: a systematic review. Lancet Oncol 14(6):e218–e228PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Waugh DJ, Wilson C (2008) The interleukin-8 pathway in cancer. Clin Cancer Res 14(21):6735–6741PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Alfaro C, Sanmamed MF, Rodriguez-Ruiz ME, Teijeira A, Onate C, Gonzalez A, Ponz M, Schalper KA, Perez-Gracia JL, Melero I (2017) Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat Rev 60:24–31PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Harada A, Sekido N, Akahoshi T, Wada T, Mukaida N, Matsushima K (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 56(5):559–564PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Stillie R, Farooq SM, Gordon JR, Stadnyk AW (2009) The functional significance behind expressing two IL-8 receptor types on PMN. J Leukoc Biol 86(3):529–543PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wang N, Zhou R, Wang C, Guo X, Chen Z, Yang S, Li Y (2012) -251 T/A polymorphism of the interleukin-8 gene and cancer risk: a HuGE review and meta-analysis based on 42 case-control studies. Mol Biol Rep 39(3):2831–2841PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kim JH, Graef AJ, Dickerson EB, Modiano JF (2015) Pathobiology of hemangiosarcoma in dogs: research advances and future perspectives. Vet Sci 2(4):388–405PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Elliott CL, Allport VC, Loudon JA, Wu GD, Bennett PR (2001) Nuclear factor-kappa B is essential for up-regulation of interleukin-8 expression in human amnion and cervical epithelial cells. Mol Hum Reprod 7(8):787–790PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Wang D, Richmond A (2001) Nuclear factor-kappa B activation by the CXC chemokine melanoma growth-stimulatory activity/growth-regulated protein involves the MEKK1/p38 mitogen-activated protein kinase pathway. J Biol Chem 276(5):3650–3659PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Wilson C, Purcell C, Seaton A, Oladipo O, Maxwell PJ, O’Sullivan JM, Wilson RH, Johnston PG, Waugh DJ (2008) Chemotherapy-induced CXC-chemokine/CXC-chemokine receptor signaling in metastatic prostate cancer cells confers resistance to oxaliplatin through potentiation of nuclear factor-kappaB transcription and evasion of apoptosis. J Pharmacol Exp Ther 327(3):746–759PubMedCrossRefGoogle Scholar
  11. 11.
    MacManus CF, Pettigrew J, Seaton A, Wilson C, Maxwell PJ, Berlingeri S, Purcell C, McGurk M, Johnston PG, Waugh DJ (2007) Interleukin-8 signaling promotes translational regulation of cyclin D in androgen-independent prostate cancer cells. Mol Cancer Res 5(7):737–748PubMedCrossRefGoogle Scholar
  12. 12.
    Pieper C, Pieloch P, Galla HJ (2013) Pericytes support neutrophil transmigration via interleukin-8 across a porcine co-culture model of the blood-brain barrier. Brain Res 1524:1–11PubMedCrossRefGoogle Scholar
  13. 13.
    Smyth LCD, Rustenhoven J, Park TI, Schweder P, Jansson D, Heppner PA, O’Carroll SJ, Mee EW, Faull RLM, Curtis M et al (2018) Unique and shared inflammatory profiles of human brain endothelia and pericytes. J Neuroinflammation 15(1):138PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Dar A, Domev H, Ben-Yosef O, Tzukerman M, Zeevi-Levin N, Novak A, Germanguz I, Amit M, Itskovitz-Eldor J (2012) Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation 125(1):87–99PubMedCrossRefGoogle Scholar
  15. 15.
    Stratman AN, Schwindt AE, Malotte KM, Davis GE (2010) Endothelial-derived PDGF-BB and HB-EGF coordinately regulate pericyte recruitment during vasculogenic tube assembly and stabilization. Blood 116(22):4720–4730PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Birbrair A, Zhang T, Wang ZM, Messi ML, Olson JD, Mintz A, Delbono O (2014) Type-2 pericytes participate in normal and tumoral angiogenesis. Am J Physiol Cell Physiol 307(1):C25–C38PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Birbrair A, Zhang T, Wang ZM, Messi ML, Mintz A, Delbono O (2013) Type-1 pericytes participate in fibrous tissue deposition in aged skeletal muscle. Am J Physiol Cell Physiol 305(11):C1098–C1113PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, Hoang CD, Diehn M, Alizadeh AA (2015) Robust enumeration of cell subsets from tissue expression profiles. Nat Methods 12(5):453–457PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Aran D, Hu Z, Butte AJ (2017) xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18(1):220PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, Coussens LM, Gabrilovich DI, Ostrand-Rosenberg S, Hedrick CC et al (2018) Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat Med 24(5):541–550PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS, Ou Yang TH, Porta-Pardo E, Gao GF, Plaisier CL, Eddy JA et al (2018) The immune landscape of cancer. Immunity 48(4):812–830.e814PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, Nair VS, Xu Y, Khuong A, Hoang CD et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21(8):938–945PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Wefers C, Schreibelt G, Massuger L, de Vries IJM, Torensma R (2018) Immune curbing of cancer stem cells by CTLs directed to NANOG. Front Immunol 9:1412PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Ginestier C, Liu S, Diebel ME, Korkaya H, Luo M, Brown M, Wicinski J, Cabaud O, Charafe-Jauffret E, Birnbaum D et al (2010) CXCR1 blockade selectively targets human breast cancer stem cells in vitro and in xenografts. J Clin Invest 120(2):485–497PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Tang KH, Ma S, Lee TK, Chan YP, Kwan PS, Tong CM, Ng IO, Man K, To KF, Lai PB et al (2012) CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology 55(3):807–820PubMedCrossRefGoogle Scholar
  26. 26.
    Hwang WL, Yang MH, Tsai ML, Lan HY, Su SH, Chang SC, Teng HW, Yang SH, Lan YT, Chiou SH et al (2011) SNAIL regulates interleukin-8 expression, stem cell-like activity, and tumorigenicity of human colorectal carcinoma cells. Gastroenterology 141(1):279–291, 291 e271–275PubMedCrossRefGoogle Scholar
  27. 27.
    Sannino G, Marchetto A, Kirchner T, Grunewald TGP (2017) Epithelial-to-mesenchymal and mesenchymal-to-epithelial transition in mesenchymal tumors: a paradox in sarcomas? Cancer Res 77(17):4556–4561PubMedCrossRefGoogle Scholar
  28. 28.
    Li Y, Laterra J (2012) Cancer stem cells: distinct entities or dynamically regulated phenotypes? Cancer Res 72(3):576–580PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Zhou H, Neelakantan D, Ford HL (2017) Clonal cooperativity in heterogenous cancers. Semin Cell Dev Biol 64:79–89PubMedCrossRefGoogle Scholar
  30. 30.
    Bhat-Nakshatri P, Appaiah H, Ballas C, Pick-Franke P, Goulet R Jr, Badve S, Srour EF, Nakshatri H (2010) SLUG/SNAI2 and tumor necrosis factor generate breast cells with CD44+/CD24- phenotype. BMC Cancer 10:411PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Savagner P, Karavanova I, Perantoni A, Thiery JP, Yamada KM (1998) Slug mRNA is expressed by specific mesodermal derivatives during rodent organogenesis. Dev Dyn 213(2):182–187PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Perez-Losada J, Sanchez-Martin M, Rodriguez-Garcia A, Sanchez ML, Orfao A, Flores T, Sanchez-Garcia I (2002) Zinc-finger transcription factor Slug contributes to the function of the stem cell factor c-kit signaling pathway. Blood 100(4):1274–1286PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wu Y, Zhou BP (2010) Snail: more than EMT. Cell Adhes Migr 4(2):199–203CrossRefGoogle Scholar
  34. 34.
    Perez-Mancera PA, Gonzalez-Herrero I, Perez-Caro M, Gutierrez-Cianca N, Flores T, Gutierrez-Adan A, Pintado B, Sanchez-Martin M, Sanchez-Garcia I (2005) SLUG in cancer development. Oncogene 24(19):3073–3082PubMedCrossRefGoogle Scholar
  35. 35.
    Lilly AJ, Johnson WE, Bunce CM (2011) The haematopoietic stem cell niche: new insights into the mechanisms regulating haematopoietic stem cell behaviour. Stem Cells Int 2011:274564PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T (1996) Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature 382(6592):635–638PubMedCrossRefGoogle Scholar
  37. 37.
    Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR (1998) Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature 393(6685):595–599PubMedCrossRefGoogle Scholar
  38. 38.
    Li KC, Huang YH, Ho CY, Chu CY, Cha ST, Tsai HH, Ko JY, Chang CC, Tan CT (2012) The role of IL-8 in the SDF-1alpha/CXCR4-induced angiogenesis of laryngeal and hypopharyngeal squamous cell carcinoma. Oral Oncol 48(6):507–515PubMedCrossRefGoogle Scholar
  39. 39.
    Mendt M, Cardier JE (2015) Role of SDF-1 (CXCL12) in regulating hematopoietic stem and progenitor cells traffic into the liver during extramedullary hematopoiesis induced by G-CSF, AMD3100 and PHZ. Cytokine 76(2):214–221PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Jung JH, Lee SJ, Kim J, Lee S, Sung HJ, An J, Park Y, Kim BS (2015) CXCR2 and its related ligands play a novel role in supporting the pluripotency and proliferation of human pluripotent stem cells. Stem Cells Dev 24(8):948–961PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Yamamoto R, Morita Y, Ooehara J, Hamanaka S, Onodera M, Rudolph KL, Ema H, Nakauchi H (2013) Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 154(5):1112–1126PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Ito K, Bonora M, Ito K (2019) Metabolism as master of hematopoietic stem cell fate. Int J Hematol 109(1):18–27PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kondo M, Scherer DC, Miyamoto T, King AG, Akashi K, Sugamura K, Weissman IL (2000) Cell-fate conversion of lymphoid-committed progenitors by instructive actions of cytokines. Nature 407(6802):383–386PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Rieger MA, Hoppe PS, Smejkal BM, Eitelhuber AC, Schroeder T (2009) Hematopoietic cytokines can instruct lineage choice. Science 325(5937):217–218PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sarrazin S, Mossadegh-Keller N, Fukao T, Aziz A, Mourcin F, Vanhille L, Kelly Modis L, Kastner P, Chan S, Duprez E et al (2009) MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138(2):300–313PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Blogowski W, Deskur A, Budkowska M, Salata D, Madej-Michniewicz A, Dabkowski K, Dolegowska B, Starzynska T (2014) Selected cytokines in patients with pancreatic cancer: a preliminary report. PLoS One 9(5):e97613PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Sendo S, Saegusa J, Morinobu A (2018) Myeloid-derived suppressor cells in non-neoplastic inflamed organs. Inflamm Regen 38:19PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Alfaro C, Teijeira A, Onate C, Perez G, Sanmamed MF, Andueza MP, Alignani D, Labiano S, Azpilikueta A, Rodriguez-Paulete A et al (2016) Tumor-produced interleukin-8 attracts human myeloid-derived suppressor cells and elicits extrusion of neutrophil extracellular traps (NETs). Clin Cancer Res 22(15):3924–3936PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Gonzalez-Aparicio M, Alfaro C (2019) Influence of interleukin-8 and neutrophil extracellular trap (NET) formation in the tumor microenvironment: is there a pathogenic role? J Immunol Res 2019:6252138PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Alfaro C, Suarez N, Martinez-Forero I, Palazon A, Rouzaut A, Solano S, Feijoo E, Gurpide A, Bolanos E, Erro L et al (2011) Carcinoma-derived interleukin-8 disorients dendritic cell migration without impairing T-cell stimulation. PLoS One 6(3):e17922PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Dowling MF (2018) Understanding the role of interleukin-8 (IL-8) in canine osteosarcoma metastasis. University of Illinois at Urbana-Champaign.
  52. 52.
    Casadevall A, Pirofski LA (2014) Microbiology: ditch the term pathogen. Nature 516(7530):165–166PubMedCrossRefGoogle Scholar
  53. 53.
    Tomasetti C, Vogelstein B (2015) Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347(6217):78–81PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Tomasetti C, Li L, Vogelstein B (2017) Stem cell divisions, somatic mutations, cancer etiology, and cancer prevention. Science 355(6331):1330–1334PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140(6):883–899PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674PubMedCrossRefGoogle Scholar
  57. 57.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3(11):991–998PubMedCrossRefGoogle Scholar
  58. 58.
    Dunn GP, Old LJ, Schreiber RD (2004) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360PubMedCrossRefGoogle Scholar
  59. 59.
    Mittal D, Gubin MM, Schreiber RD, Smyth MJ (2014) New insights into cancer immunoediting and its three component phases – elimination, equilibrium and escape. Curr Opin Immunol 27:16–25PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G (2018) Of mice, dogs, pigs, and men: choosing the appropriate model for immuno-oncology research. ILAR J 59:247PubMedCrossRefGoogle Scholar
  61. 61.
    Kim JH, Yu CH, Yhee JY, Im KS, Sur JH (2010) Lymphocyte infiltration, expression of interleukin (IL) -1, IL-6 and expression of mutated breast cancer susceptibility gene-1 correlate with malignancy of canine mammary tumours. J Comp Pathol 142(2–3):177–186PubMedCrossRefGoogle Scholar
  62. 62.
    Kim JH, Chon SK, Im KS, Kim NH, Cho KW, Sur JH (2013) Infiltrating Foxp3+ regulatory T cells and histopathological features in canine classical and spermatocytic seminomas. Reprod Domest Anim 48(2):218–222PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Kim JH, Hur JH, Lee SM, Im KS, Kim NH, Sur JH (2012) Correlation of Foxp3 positive regulatory T cells with prognostic factors in canine mammary carcinomas. Vet J 193(1):222–227PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Porcellato I, Brachelente C, De Paolis L, Menchetti L, Silvestri S, Sforna M, Vichi G, Iussich S, Mechelli L (2019) FoxP3 and IDO in canine melanocytic tumors. Vet Pathol 56(2):189–199PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Filley A, Henriquez M, Bhowmik T, Tewari BN, Rao X, Wan J, Miller MA, Liu Y, Bentley RT, Dey M (2018) Immunologic and gene expression profiles of spontaneous canine oligodendrogliomas. J Neuro-Oncol 137(3):469–479CrossRefGoogle Scholar
  66. 66.
    Modiano JF, Bellgrau D, Cutter GR, Lana SE, Ehrhart NP, Ehrhart E, Wilke VL, Charles JB, Munson S, Scott MC et al (2012) Inflammation, apoptosis, and necrosis induced by neoadjuvant fas ligand gene therapy improves survival of dogs with spontaneous bone cancer. Mol Ther 20(12):2234–2243PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Estrela-Lima A, Araujo MS, Costa-Neto JM, Teixeira-Carvalho A, Barrouin-Melo SM, Cardoso SV, Martins-Filho OA, Serakides R, Cassali GD (2010) Immunophenotypic features of tumor infiltrating lymphocytes from mammary carcinomas in female dogs associated with prognostic factors and survival rates. BMC Cancer 10:256PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Davoli T, Uno H, Wooten EC, Elledge SJ (2017) Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy. Science 355(6322):eaaf8399PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Bonavita E, Gentile S, Rubino M, Maina V, Papait R, Kunderfranco P, Greco C, Feruglio F, Molgora M, Laface I et al (2015) PTX3 is an extrinsic oncosuppressor regulating complement-dependent inflammation in cancer. Cell 160(4):700–714PubMedCrossRefGoogle Scholar
  70. 70.
    Scott MC, Temiz NA, Sarver AE, LaRue RS, Rathe SK, Varshney J, Wolf NK, Moriarity BS, O’Brien TD, Spector LG et al (2018) Comparative transcriptome analysis quantifies immune cell transcript levels, metastatic progression, and survival in osteosarcoma. Cancer Res 78(2):326–337PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Scott MC, Tomiyasu H, Garbe JR, Cornax I, Amaya C, O’Sullivan MG, Subramanian S, Bryan BA, Modiano JF (2016) Heterotypic mouse models of canine osteosarcoma recapitulate tumor heterogeneity and biological behavior. Dis Model Mech 9(12):1435–1444PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kim JH, Megquier K, Sarver AL, Thomas R, Wang C, Elvers I, Karlsson E, Breen M, Lindblad-Toh K, Modiano JF (2018) Mutational and transcriptomic profiling identify distinct angiogenic and inflammatory subtypes of angiosarcoma. In: AACR annual meeting. American Association for Cancer Research, Chicago, p 2018Google Scholar
  73. 73.
    Fosmire SP, Dickerson EB, Scott AM, Bianco SR, Pettengill MJ, Meylemans H, Padilla M, Frazer-Abel AA, Akhtar N, Getzy DM et al (2004) Canine malignant hemangiosarcoma as a model of primitive angiogenic endothelium. Lab Investig 84(5):562–572PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Tamburini BA, Phang TL, Fosmire SP, Scott MC, Trapp SC, Duckett MM, Robinson SR, Slansky JE, Sharkey LC, Cutter GR et al (2010) Gene expression profiling identifies inflammation and angiogenesis as distinguishing features of canine hemangiosarcoma. BMC Cancer 10:619PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Tamburini BA, Trapp S, Phang TL, Schappa JT, Hunter LE, Modiano JF (2009) Gene expression profiles of sporadic canine hemangiosarcoma are uniquely associated with breed. PLoS One 4(5):e5549PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Kim JH, Frantz AM, Anderson KL, Graef AJ, Scott MC, Robinson S, Sharkey LC, O’Brien TD, Dickerson EB, Modiano JF (2014) Interleukin-8 promotes canine hemangiosarcoma growth by regulating the tumor microenvironment. Exp Cell Res 323(1):155–164PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Rovai LE, Herschman HR, Smith JB (1998) The murine neutrophil-chemoattractant chemokines LIX, KC, and MIP-2 have distinct induction kinetics, tissue distributions, and tissue-specific sensitivities to glucocorticoid regulation in endotoxemia. J Leukoc Biol 64(4):494–502PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Asfaha S, Dubeykovskiy AN, Tomita H, Yang X, Stokes S, Shibata W, Friedman RA, Ariyama H, Dubeykovskaya ZA, Muthupalani S et al (2013) Mice that express human interleukin-8 have increased mobilization of immature myeloid cells, which exacerbates inflammation and accelerates colon carcinogenesis. Gastroenterology 144(1):155–166PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Moldobaeva A, Baek A, Eldridge L, Wagner EM (2010) Differential activity of pro-angiogenic CXC chemokines. Microvasc Res 80(1):18–22PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Akhtar N, Padilla ML, Dickerson EB, Steinberg H, Breen M, Auerbach R, Helfand SC (2004) Interleukin-12 inhibits tumor growth in a novel angiogenesis canine hemangiosarcoma xenograft model. Neoplasia 6(2):106–116PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Andersen NJ, Nickoloff BJ, Dykema KJ, Boguslawski EA, Krivochenitser RI, Froman RE, Dawes MJ, Baker LH, Thomas DG, Kamstock DA et al (2013) Pharmacologic inhibition of MEK signaling prevents growth of canine hemangiosarcoma. Mol Cancer Ther 12(9):1701–1714PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Murai A, Asa SA, Kodama A, Hirata A, Yanai T, Sakai H (2012) Constitutive phosphorylation of the mTORC2/Akt/4E-BP1 pathway in newly derived canine hemangiosarcoma cell lines. BMC Vet Res 8:128PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Kodama A, Sakai H, Matsuura S, Murakami M, Murai A, Mori T, Maruo K, Kimura T, Masegi T, Yanai T (2009) Establishment of canine hemangiosarcoma xenograft models expressing endothelial growth factors, their receptors, and angiogenesis-associated homeobox genes. BMC Cancer 9:363PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Kim JH, Frantz AM, Sarver AL, Gorden Klukas BH, Lewellen M, O’Brien TD, Dickerson EB, Modiano JF (2018) Modulation of fatty acid metabolism and immune suppression are features of in vitro tumour sphere formation in ontogenetically distinct dog cancers. Vet Comp Oncol 16(1):E176–E184PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Borgatti A, Koopmeiners JS, Sarver AL, Winter AL, Stuebner K, Todhunter D, Rizzardi AE, Henriksen JC, Schmechel S, Forster CL et al (2017) Safe and effective sarcoma therapy through bispecific targeting of EGFR and uPAR. Mol Cancer Ther 16(5):956–965PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Animal Cancer Care and Research ProgramUniversity of MinnesotaSt PaulUSA
  2. 2.Department of Veterinary Clinical SciencesCollege of Veterinary Medicine, University of MinnesotaSt PaulUSA
  3. 3.Masonic Cancer Center, University of MinnesotaMinneapolisUSA

Personalised recommendations