Advertisement

IL-1 Signaling in Tumor Microenvironment

  • Weizhou ZhangEmail author
  • Nicholas Borcherding
  • Ryan Kolb
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1240)

Abstract

Interleukin 1 (IL-1) has long been known for its pleiotropic effects on inflammation that plays a complex, and sometimes contrasting, role in different stages of cancer development. As a major proinflammatory cytokine, IL-1β is mainly expressed by innate immune cells. IL-1α, however, is expressed by various cell types under physiological and pathological conditions. IL-1R1 is the main receptor for both ligands and is expressed by various cell types, including innate and adaptive immune cell types, epithelial cells, endothelial cells, adipocytes, chondrocytes, fibroblasts, etc. IL-1 and IL-1R1 receptor interaction leads to a set of common signaling pathways, mainly the NF-kB and MAP kinase pathways, as a result of complex positive and negative regulations. The variety of cell types with IL-1R1 expression dictates the role of IL-1 signaling at different stages of cancer, which under certain circumstances leads to contrasting roles in tumor development. Recent availability of IL-1R1 conditional knockout mouse model has made it possible to dissect the role of IL-1/IL-1R1 signaling transduction in different cell types within the tumor microenvironment. This chapter will focus on the role of IL-1/IL-1R1 in different cell types within the tumor microenvironment and discuss the potential of targeting this pathway in cancer therapy.

Keywords

Interleukin-1α Interleukin-1β IL-1R1 IL-1RA IL-1 signaling pathway Tumor microenvironment Breast cancer Sarcoma Melanoma Colorectal cancer Hepatocellular carcinoma Mouse models Pleiotropic effects Cancer progression Cancer therapy 

References

  1. 1.
    (1979) Revised nomenclature for antigen-nonspecific T cell proliferation and helper factors. J Immunol 123(6):2928–2929Google Scholar
  2. 2.
    Gabay C, Lamacchia C, Palmer G (2010) IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 6(4):232–241PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sims JE, Smith DE (2010) The IL-1 family: regulators of immunity. Nat Rev Immunol 10(2):89–102PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Mantovani A, Dinarello CA, Molgora M et al (2019) Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50(4):778–795PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Voronov E, Dinarello CA, Apte RN (2018) Interleukin-1alpha as an intracellular alarmin in cancer biology. Semin Immunol 38:3–14PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Garlanda C, Dinarello CA, Mantovani A (2013) The interleukin-1 family: back to the future. Immunity 39(6):1003–1018PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    La E, Rundhaug JE, Pavone A et al (2002) Regulation of transcription of the intracellular interleukin-1 receptor antagonist gene by AP-1 in mouse carcinoma cells. Mol Carcinog 33(4):237–243PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    La E, Fischer SM (2001) Transcriptional regulation of intracellular IL-1 receptor antagonist gene by IL-1 alpha in primary mouse keratinocytes. J Immunol 166(10):6149–6155PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Swanson KV, Deng M, Ting JP (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19:477–489.  https://doi.org/10.1038/s41577-019-0165-0CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Karki R, Kanneganti TD (2019) Diverging inflammasome signals in tumorigenesis and potential targeting. Nat Rev Cancer 19(4):197–214PubMedPubMedCentralGoogle Scholar
  11. 11.
    Afonina IS, Zhong Z, Karin M et al (2017) Limiting inflammation-the negative regulation of NF-kappaB and the NLRP3 inflammasome. Nat Immunol 18(8):861–869PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Vance RE (2015) The NAIP/NLRC4 inflammasomes. Curr Opin Immunol 32:84–89PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kolb R, Liu GH, Janowski AM et al (2014) Inflammasomes in cancer: a double-edged sword. Protein Cell 5(1):12–20PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Cassel SL, Janczy JR, Bing X et al (2014) Inflammasome-independent IL-1beta mediates autoinflammatory disease in Pstpip2-deficient mice. Proc Natl Acad Sci U S A 111(3):1072–1077PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    McLoed AG, Sherrill TP, Cheng DS et al (2016) Neutrophil-derived IL-1beta impairs the efficacy of NF-kappaB inhibitors against lung cancer. Cell Rep 16(1):120–132PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kuan EL, Ziegler SF (2018) A tumor-myeloid cell axis, mediated via the cytokines IL-1alpha and TSLP, promotes the progression of breast cancer. Nat Immunol 19(4):366–374PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Coffelt SB, Kersten K, Doornebal CW et al (2015) IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature 522(7556):345–348PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Dmitrieva-Posocco O, Dzutsev A, Posocco DF et al (2019) Cell-type-specific responses to interleukin-1 Control microbial invasion and tumor-elicited inflammation in colorectal cancer. Immunity 50(1):166–180 e7PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Liu L, Gudas LJ (2002) Retinoic acid induces expression of the interleukin-1beta gene in cultured normal human mammary epithelial cells and in human breast carcinoma lines. J Cell Physiol 193(2):244–252PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Hughes R, Timmermans P, Schrey MP (1996) Regulation of arachidonic acid metabolism, aromatase activity and growth in human breast cancer cells by interleukin-1beta and phorbol ester: dissociation of a mediatory role for prostaglandin E2 in the autocrine control of cell function. Int J Cancer 67(5):684–689PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Shen WH, Jackson ST, Broussard SR et al (2004) IL-1beta suppresses prolonged Akt activation and expression of E2F-1 and cyclin A in breast cancer cells. J Immunol 172(12):7272–7281PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Wang FM, Liu HQ, Liu SR et al (2005) SHP-2 promoting migration and metastasis of MCF-7 with loss of E-cadherin, dephosphorylation of FAK and secretion of MMP-9 induced by IL-1beta in vivo and in vitro. Breast Cancer Res Treat 89(1):5–14PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Franco-Barraza J, Valdivia-Silva JE, Zamudio-Meza H et al (2010) Actin cytoskeleton participation in the onset of IL-1beta induction of an invasive mesenchymal-like phenotype in epithelial MCF-7 cells. Arch Med Res 41(3):170–181PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Ma L, Lan F, Zheng Z et al (2012) Epidermal growth factor (EGF) and interleukin (IL)-1beta synergistically promote ERK1/2-mediated invasive breast ductal cancer cell migration and invasion. Mol Cancer 11:79PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Li Q, Engelhardt JF (2006) Interleukin-1beta induction of NFkappaB is partially regulated by H2O2-mediated activation of NFkappaB-inducing kinase. J Biol Chem 281(3):1495–1505PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Naldini A, Filippi I, Miglietta D et al (2010) Interleukin-1beta regulates the migratory potential of MDAMB231 breast cancer cells through the hypoxia-inducible factor-1alpha. Eur J Cancer 46(18):3400–3408PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Perez-Yepez EA, Ayala-Sumuano JT, Lezama R et al (2014) A novel beta-catenin signaling pathway activated by IL-1beta leads to the onset of epithelial-mesenchymal transition in breast cancer cells. Cancer Lett 354(1):164–171PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kendellen MF, Bradford JW, Lawrence CL et al (2014) Canonical and non-canonical NF-kappaB signaling promotes breast cancer tumor-initiating cells. Oncogene 33(10):1297–1305PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Castano Z, San Juan BP, Spiegel A et al (2018) IL-1beta inflammatory response driven by primary breast cancer prevents metastasis-initiating cell colonization. Nat Cell Biol 20(9):1084–1097PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Tulotta C, Lefley DV, Freeman K et al (2019) Endogenous production of IL1B by breast cancer cells drives metastasis and colonization of the bone microenvironment. Clin Cancer Res 25(9):2769–2782PubMedCrossRefGoogle Scholar
  31. 31.
    Holen I, Lefley DV, Francis SE et al (2016) IL-1 drives breast cancer growth and bone metastasis in vivo. Oncotarget 7(46):75571–75584PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Wu TC, Xu K, Martinek J et al (2018) IL1 receptor antagonist controls transcriptional signature of inflammation in patients with metastatic breast cancer. Cancer Res 78(18):5243–5258PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Danforth DN Jr, Sgagias MK (1991) Interleukin 1 alpha blocks estradiol-stimulated growth and down-regulates the estrogen receptor in MCF-7 breast cancer cells in vitro. Cancer Res 51(5):1488–1493PubMedGoogle Scholar
  34. 34.
    Danforth DN Jr, Sgagias MK (1993) Interleukin-1 alpha and interleukin-6 act additively to inhibit growth of MCF-7 breast cancer cells in vitro. Cancer Res 53(7):1538–1545PubMedGoogle Scholar
  35. 35.
    Kumar S, Kishimoto H, Chua HL et al (2003) Interleukin-1 alpha promotes tumor growth and cachexia in MCF-7 xenograft model of breast cancer. Am J Pathol 163(6):2531–2541PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Sheridan C, Kishimoto H, Fuchs RK et al (2006) CD44+/CD24- breast cancer cells exhibit enhanced invasive properties: an early step necessary for metastasis. Breast Cancer Res 8(5):R59PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Bhat-Nakshatri P, Newton TR, Goulet R Jr et al (1998) NF-kappaB activation and interleukin 6 production in fibroblasts by estrogen receptor-negative breast cancer cell-derived interleukin 1alpha. Proc Natl Acad Sci U S A 95(12):6971–6976PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Nozaki S, Sledge GW Jr, Nakshatri H (2000) Cancer cell-derived interleukin 1alpha contributes to autocrine and paracrine induction of pro-metastatic genes in breast cancer. Biochem Biophys Res Commun 275(1):60–62PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Singer CF, Kronsteiner N, Hudelist G et al (2003) Interleukin 1 system and sex steroid receptor expression in human breast cancer: interleukin 1alpha protein secretion is correlated with malignant phenotype. Clin Cancer Res 9(13):4877–4883PubMedPubMedCentralGoogle Scholar
  40. 40.
    Singer CF, Hudelist G, Gschwantler-Kaulich D et al (2006) Interleukin-1alpha protein secretion in breast cancer is associated with poor differentiation and estrogen receptor alpha negativity. Int J Gynecol Cancer 16(Suppl 2):556–559PubMedCrossRefGoogle Scholar
  41. 41.
    Wang Y, Wang Y, Li L (2016) Note of clarification regarding data about the association between the interleukin-1beta -31T>C polymorphism and breast cancer risk. Breast Cancer Res Treat 155(3):415–417PubMedCrossRefGoogle Scholar
  42. 42.
    Liu X, Wang Z, Yu J et al (2010) Three polymorphisms in interleukin-1beta gene and risk for breast cancer: a meta-analysis. Breast Cancer Res Treat 124(3):821–825PubMedCrossRefGoogle Scholar
  43. 43.
    Lee KM, Park SK, Hamajima N et al (2006) Genetic polymorphisms of interleukin-1 beta (IL-1B) and IL-1 receptor antagonist (IL-1RN) and breast cancer risk in Korean women. Breast Cancer Res Treat 96(2):197–202PubMedCrossRefGoogle Scholar
  44. 44.
    Hefler LA, Grimm C, Lantzsch T et al (2005) Interleukin-1 and interleukin-6 gene polymorphisms and the risk of breast cancer in caucasian women. Clin Cancer Res 11(16):5718–5721PubMedCrossRefGoogle Scholar
  45. 45.
    Jin T, Cao W, Zuo X et al (2017) IL-1RN gene polymorphisms are associated with breast cancer risk in a Chinese Han population. J Gene Med 19(12):e2996CrossRefGoogle Scholar
  46. 46.
    Huang X, Yang Y, Cui ZW et al (2016) A functional insertion/deletion polymorphism in the IL1A gene is associated with decreased risk of breast cancer. Genet Mol Res 15(1):4238Google Scholar
  47. 47.
    Gao Y, He Y, Ding J et al (2009) An insertion/deletion polymorphism at miRNA-122-binding site in the interleukin-1alpha 3′ untranslated region confers risk for hepatocellular carcinoma. Carcinogenesis 30(12):2064–2069PubMedCrossRefGoogle Scholar
  48. 48.
    Han W, Kang SY, Kang D et al (2010) Multiplex genotyping of 1107 SNPs from 232 candidate genes identified an association between IL1A polymorphism and breast cancer risk. Oncol Rep 23(3):763–769PubMedGoogle Scholar
  49. 49.
    Kaplanov I, Carmi Y, Kornetsky R et al (2019) Blocking IL-1beta reverses the immunosuppression in mouse breast cancer and synergizes with anti-PD-1 for tumor abrogation. Proc Natl Acad Sci U S A 116(4):1361–1369PubMedCrossRefGoogle Scholar
  50. 50.
    Kolb R, Phan L, Borcherding N et al (2016) Obesity-associated NLRC4 inflammasome activation drives breast cancer progression. Nat Commun 7:13007PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Kolb R, Kluz P, Tan ZW et al (2019) Obesity-associated inflammation promotes angiogenesis and breast cancer via angiopoietin-like 4. Oncogene 38(13):2351–2363PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Weichand B, Popp R, Dziumbla S et al (2017) S1PR1 on tumor-associated macrophages promotes lymphangiogenesis and metastasis via NLRP3/IL-1beta. J Exp Med 214(9):2695–2713PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Guo B, Fu S, Zhang J et al (2016) Targeting inflammasome/IL-1 pathways for cancer immunotherapy. Sci Rep 6:36107PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Grosman H, Fabre B, Lopez M et al (2016) Complex relationship between sex hormones, insulin resistance and leptin in men with and without prostatic disease. Aging Male 19(1):40–45PubMedCrossRefGoogle Scholar
  55. 55.
    Dagenais M, Dupaul-Chicoine J, Douglas T et al (2017) The interleukin (IL)-1R1 pathway is a critical negative regulator of PyMT-mediated mammary tumorigenesis and pulmonary metastasis. Oncoimmunology 6(3):e1287247PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    DeNardo DG, Barreto JB, Andreu P et al (2009) CD4(+) T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 16(2):91–102PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Pfefferle AD, Herschkowitz JI, Usary J et al (2013) Transcriptomic classification of genetically engineered mouse models of breast cancer identifies human subtype counterparts. Genome Biol 14(11):R125PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Melendez JA, Davies KJ (1996) Manganese superoxide dismutase modulates interleukin-1alpha levels in HT-1080 fibrosarcoma cells. J Biol Chem 271(31):18898–18903PubMedCrossRefGoogle Scholar
  59. 59.
    Gigant-Huselstein C, Dumas D, Payan E et al (2002) In vitro study of intracellular IL-1beta production and beta1 integrins expression in stimulated chondrocytes—effect of rhein. Biorheology 39(1–2):277–285PubMedGoogle Scholar
  60. 60.
    Ju J, Huang C, Minskoff SA et al (2003) Simultaneous gene expression analysis of steady-state and actively translated mRNA populations from osteosarcoma MG-63 cells in response to IL-1alpha via an open expression analysis platform. Nucleic Acids Res 31(17):5157–5166PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Shi J, Schmitt-Talbot E, DiMattia DA et al (2004) The differential effects of IL-1 and TNF-alpha on proinflammatory cytokine and matrix metalloproteinase expression in human chondrosarcoma cells. Inflamm Res 53(8):377–389PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Chang DM, Liu SH, Lee HS et al (2007) Activin A suppresses interleukin-1-induced matrix metalloproteinase 3 secretion in human chondrosarcoma cells. Rheumatol Int 27(11):1049–1055PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Ha WY, Li XJ, Yue PY et al (2006) Gene expression profiling of human synovial sarcoma cell line (Hs701.T) in response to IL-1beta stimulation. Inflamm Res 55(7):293–299PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Choi EM, Lee YS (2010) Luteolin suppresses IL-1beta-induced cytokines and MMPs production via p38 MAPK, JNK, NF-kappaB and AP-1 activation in human synovial sarcoma cell line, SW982. Food Chem Toxicol 48(10):2607–2611PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lim H, Kim HP (2011) Matrix metalloproteinase-13 expression in IL-1beta-treated chondrocytes by activation of the p38 MAPK/c-Fos/AP-1 and JAK/STAT pathways. Arch Pharm Res 34(1):109–117PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Lanier SM, Homcy CJ, Patenaude C et al (1988) Identification of structurally distinct alpha 2-adrenergic receptors. J Biol Chem 263(28):14491–14496PubMedPubMedCentralGoogle Scholar
  67. 67.
    Kalinski T, Krueger S, Sel S et al (2006) Differential expression of VEGF-A and angiopoietins in cartilage tumors and regulation by interleukin-1beta. Cancer 106(9):2028–2038PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Liu B, Zhou Y, Chen X et al (2017) IL-1beta-mediated NF-kappaB signaling augments the osteosarcoma cell growth through modulating miR-376c/TGFA axis. Pharmazie 72(7):419–424PubMedPubMedCentralGoogle Scholar
  69. 69.
    Hu M, Yuan X, Liu Y et al (2017) IL-1beta-induced NF-kappaB activation down-regulates miR-506 expression to promotes osteosarcoma cell growth through JAG1. Biomed Pharmacother 95:1147–1155PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Zeng L, Rong XF, Li RH et al (2017) Icariin inhibits MMP1, MMP3 and MMP13 expression through MAPK pathways in IL1betastimulated SW1353 chondrosarcoma cells. Mol Med Rep 15(5):2853–2858PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    He Y, Liang X, Meng C et al (2014) Genetic polymorphisms of interleukin-1 beta and osteosarcoma risk. Int Orthop 38(8):1671–1676PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Song X, Voronov E, Dvorkin T et al (2003) Differential effects of IL-1 alpha and IL-1 beta on tumorigenicity patterns and invasiveness. J Immunol 171(12):6448–6456CrossRefGoogle Scholar
  73. 73.
    Nazarenko I, Marhaba R, Reich E et al (2008) Tumorigenicity of IL-1alpha- and IL-1beta-deficient fibrosarcoma cells. Neoplasia 10(6):549–562PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Marhaba R, Nazarenko I, Knofler D et al (2008) Opposing effects of fibrosarcoma cell-derived IL-1 alpha and IL-1 beta on immune response induction. Int J Cancer 123(1):134–145PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Krelin Y, Voronov E, Dotan S et al (2007) Interleukin-1beta-driven inflammation promotes the development and invasiveness of chemical carcinogen-induced tumors. Cancer Res 67(3):1062–1071PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Elkabets M, Krelin Y, Dotan S et al (2009) Host-derived interleukin-1alpha is important in determining the immunogenicity of 3-methylcholantrene tumor cells. J Immunol 182(8):4874–4881PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Tak KH, Yu GI, Lee MY et al (2018) Association between polymorphisms of interleukin 1 family genes and hepatocellular carcinoma. Med Sci Monit 24:3488–3495PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Wang Y, Kato N, Hoshida Y et al (2003) Interleukin-1beta gene polymorphisms associated with hepatocellular carcinoma in hepatitis C virus infection. Hepatology 37(1):65–71PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    ElSheshtawy NM, Nour MS, Hefny Z et al (2017) Gene polymorphisms of interleukin 1? And metalloproteinase 3 in hepatitis C infected patients and hepatocellular carcinoma patients. Egypt J Immunol 24(1):1–8PubMedPubMedCentralGoogle Scholar
  80. 80.
    Sakurai T, He G, Matsuzawa A et al (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14(2):156–165PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Maeda S, Kamata H, Luo JL et al (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121(7):977–990PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Naugler WE, Sakurai T, Kim S et al (2007) Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science 317(5834):121–124PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Yoshimoto S, Loo TM, Atarashi K et al (2013) Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome. Nature 499(7456):97–101PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Shrivastava S, Mukherjee A, Ray R et al (2013) Hepatitis C virus induces interleukin-1beta (IL-1beta)/IL-18 in circulatory and resident liver macrophages. J Virol 87(22):12284–12290PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Negash AA, Ramos HJ, Crochet N et al (2013) IL-1beta production through the NLRP3 inflammasome by hepatic macrophages links hepatitis C virus infection with liver inflammation and disease. PLoS Pathog 9(4):e1003330PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Lanaya H, Natarajan A, Komposch K et al (2014) EGFR has a tumour-promoting role in liver macrophages during hepatocellular carcinoma formation. Nat Cell Biol 16(10):972–977PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    He G, Dhar D, Nakagawa H et al (2013) Identification of liver cancer progenitors whose malignant progression depends on autocrine IL-6 signaling. Cell 155(2):384–396PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Young HL, Rowling EJ, Bugatti M et al (2017) An adaptive signaling network in melanoma inflammatory niches confers tolerance to MAPK signaling inhibition. J Exp Med 214(6):1691–1710PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Gehrke S, Otsuka A, Huber R et al (2014) Metastatic melanoma cell lines do not secrete IL-1beta but promote IL-1beta production from macrophages. J Dermatol Sci 74(2):167–169PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Qin Y, Ekmekcioglu S, Liu P et al (2011) Constitutive aberrant endogenous interleukin-1 facilitates inflammation and growth in human melanoma. Mol Cancer Res 9(11):1537–1550PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Khalili JS, Liu S, Rodriguez-Cruz TG et al (2012) Oncogenic BRAF(V600E) promotes stromal cell-mediated immunosuppression via induction of interleukin-1 in melanoma. Clin Cancer Res 18(19):5329–5340PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Giavazzi R, Garofalo A, Bani MR et al (1990) Interleukin 1-induced augmentation of experimental metastases from a human melanoma in nude mice. Cancer Res 50(15):4771–4775PubMedPubMedCentralGoogle Scholar
  93. 93.
    Lauri D, Bertomeu MC, Orr FW et al (1990) Interleukin-1 increases tumor cell adhesion to endothelial cells through an RGD dependent mechanism: in vitro and in vivo studies. Clin Exp Metastasis 8(1):27–32PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Pan W, Zhu S, Qu K et al (2017) The DNA methylcytosine dioxygenase Tet2 sustains immunosuppressive function of tumor-infiltrating myeloid cells to promote melanoma progression. Immunity 47(2):284–297 e5PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Qin Y, Milton DR, Oba J et al (2015) Inflammatory IL-1beta-driven JNK activation in stage III melanoma. Pigment Cell Melanoma Res 28(2):236–239PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hoffmann W, Hauser F (1993) The P-domain or trefoil motif: a role in renewal and pathology of mucous epithelia? Trends Biochem Sci 18(7):239–243PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Chirivi RG, Chiodoni C, Musiani P et al (1996) IL-1alpha gene-transfected human melanoma cells increase tumor-cell adhesion to endothelial cells and their retention in the lung of nude mice. Int J Cancer 67(6):856–863PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Howell WM, Turner SJ, Theaker JM et al (2003) Cytokine gene single nucleotide polymorphisms and susceptibility to and prognosis in cutaneous malignant melanoma. Eur J Immunogenet 30(6):409–414PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Broer PN, Aung T, Heidekrueger PI et al (2017) Divisive influence of interleukin-1 receptor antagonist polymorphisms in melanoma patients. Clin Hemorheol Microcirc 67(3–4):319–326PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Voronov E, Shouval DS, Krelin Y et al (2003) IL-1 is required for tumor invasiveness and angiogenesis. Proc Natl Acad Sci U S A 100(5):2645–2650PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Carmi Y, Dotan S, Rider P et al (2013) The role of IL-1beta in the early tumor cell-induced angiogenic response. J Immunol 190(7):3500–3509PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Vidal-Vanaclocha F, Fantuzzi G, Mendoza L et al (2000) IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci U S A 97(2):734–739PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Lavi G, Voronov E, Dinarello CA et al (2007) Sustained delivery of IL-1 Ra from biodegradable microspheres reduces the number of murine B16 melanoma lung metastases. J Control Release 123(2):123–130PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Thorslund SE, Ermert D, Fahlgren A et al (2013) Role of YopK in Yersinia pseudotuberculosis resistance against polymorphonuclear leukocyte defense. Infect Immun 81(1):11–22PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Coste I, Le Corf K, Kfoury A et al (2010) Dual function of MyD88 in RAS signaling and inflammation, leading to mouse and human cell transformation. J Clin Invest 120(10):3663–3667PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Thoua NM, Derrett-Smith EC, Khan K et al (2012) Gut fibrosis with altered colonic contractility in a mouse model of scleroderma. Rheumatology (Oxford) 51(11):1989–1998CrossRefGoogle Scholar
  107. 107.
    Murphy JE, Morales RE, Scott J et al (2003) IL-1 alpha, innate immunity, and skin carcinogenesis: the effect of constitutive expression of IL-1 alpha in epidermis on chemical carcinogenesis. J Immunol 170(11):5697–5703PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Jarry A, Vallette G, Cassagnau E et al (1999) Interleukin 1 and interleukin 1beta converting enzyme (caspase 1) expression in the human colonic epithelial barrier. Caspase 1 downregulation in colon cancer. Gut 45(2):246–251PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Shao J, Sheng H (2007) Prostaglandin E2 induces the expression of IL-1alpha in colon cancer cells. J Immunol 178(7):4097–4103PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Wright NT, Margolis JW, Margolis FL et al (2005) Refinement of the solution structure of rat olfactory marker protein (OMP). J Biomol NMR 33(1):63–68PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Matsuo Y, Sawai H, Ma J et al (2009) IL-1alpha secreted by colon cancer cells enhances angiogenesis: the relationship between IL-1alpha release and tumor cells' potential for liver metastasis. J Surg Oncol 99(6):361–367PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Akagi Y, Liu W, Xie K et al (1999) Regulation of vascular endothelial growth factor expression in human colon cancer by interleukin-1beta. Br J Cancer 80(10):1506–1511PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Konishi N, Miki C, Yoshida T et al (2005) Interleukin-1 receptor antagonist inhibits the expression of vascular endothelial growth factor in colorectal carcinoma. Oncology 68(2–3):138–145PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Li Y, Wang L, Pappan L et al (2012) IL-1beta promotes stemness and invasiveness of colon cancer cells through Zeb1 activation. Mol Cancer 11:87PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Kaler P, Augenlicht L, Klampfer L (2009) Macrophage-derived IL-1beta stimulates Wnt signaling and growth of colon cancer cells: a crosstalk interrupted by vitamin D3. Oncogene 28(44):3892–3902PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Duque J, Diaz-Munoz MD, Fresno M et al (2006) Up-regulation of cyclooxygenase-2 by interleukin-1beta in colon carcinoma cells. Cell Signal 18(8):1262–1269PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Lurje G, Hendifar AE, Schultheis AM et al (2009) Polymorphisms in interleukin 1 beta and interleukin 1 receptor antagonist associated with tumor recurrence in stage II colon cancer. Pharmacogenet Genomics 19(2):95–102PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Viet HT, Wagsater D, Hugander A et al (2005) Interleukin-1 receptor antagonist gene polymorphism in human colorectal cancer. Oncol Rep 14(4):915–918PubMedPubMedCentralGoogle Scholar
  119. 119.
    Salcedo R, Worschech A, Cardone M et al (2010) MyD88-mediated signaling prevents development of adenocarcinomas of the colon: role of interleukin 18. J Exp Med 207(8):1625–1636PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Chung Y, Chang SH, Martinez GJ et al (2009) Critical regulation of early Th17 cell differentiation by interleukin-1 signaling. Immunity 30(4):576–587PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Coccia M, Harrison OJ, Schiering C et al (2012) IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med 209(9):1595–1609PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Bruttger J, Karram K, Wortge S et al (2015) Genetic cell ablation reveals clusters of local self-renewing microglia in the mammalian central nervous system. Immunity 43(1):92–106CrossRefGoogle Scholar
  123. 123.
    Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118(3):285–296PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Wang K, Kim MK, Di Caro G et al (2014) Interleukin-17 receptor a signaling in transformed enterocytes promotes early colorectal tumorigenesis. Immunity 41(6):1052–1063PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Grivennikov S, Karin E, Terzic J et al (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15(2):103–113PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Grivennikov SI, Wang K, Mucida D et al (2012) Adenoma-linked barrier defects and microbial products drive IL-23/IL-17-mediated tumour growth. Nature 491(7423):254–258PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Bersudsky M, Luski L, Fishman D et al (2014) Non-redundant properties of IL-1alpha and IL-1beta during acute colon inflammation in mice. Gut 63(4):598–609PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Wang T, Feng Y, Zhao Z et al (2019) IL1RN polymorphisms are associated with a decreased risk of esophageal cancer susceptibility in a Chinese population. Chemotherapy.  https://doi.org/10.1159/000496400:1-8
  129. 129.
    Wu J, Zhang W, Cai J et al (2019) Influence of IL-1R2 polymorphisms on endometrial cancer susceptibility in the Chinese Han population. Mol Genet Genomic Med 7(5):e650PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Wang C, Zhang C, Xu J et al (2019) Association between IL-1R2 polymorphisms and lung cancer risk in the Chinese Han population: a case-control study. Mol Genet Genomic Med 7(5):e644PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Niu F, Wang T, Li J et al (2019) The impact of genetic variants in IL1R2 on cervical cancer risk among Uygur females from China: a case-control study. Mol Genet Genomic Med 7(1):e00516PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Chen B, Luo MX, Zhou X et al (2016) Correlation between interleukin-1beta-511 C/T polymorphism and gastric cancer in Chinese populations: a meta-analysis. Med Sci Monit 22:1742–1750PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Lee YH, Song GG (2014) A meta-analysis of the association between CTLA-4 +49 A/G, −318 C/T, and IL-1 polymorphisms and susceptibility to cervical cancer. Neoplasma 61(4):481–490PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Xu H, Ding Q, Jiang HW (2014) Genetic polymorphism of interleukin-1A (IL-1A), IL-1B, and IL-1 receptor antagonist (IL-1RN) and prostate cancer risk. Asian Pac J Cancer Prev 15(20):8741–8747PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Marazioti A, Lilis I, Vreka M et al (2018) Myeloid-derived interleukin-1beta drives oncogenic KRAS-NF-kappaBeta addiction in malignant pleural effusion. Nat Commun 9(1):672PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Lu X, Horner JW, Paul E et al (2017) Effective combinatorial immunotherapy for castration-resistant prostate cancer. Nature 543(7647):728–732PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Johnson KE, Chikoti L, Chandran B (2013) Herpes simplex virus 1 infection induces activation and subsequent inhibition of the IFI16 and NLRP3 inflammasomes. J Virol 87(9):5005–5018PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    De Marco P, Lappano R, De Francesco EM et al (2016) GPER signalling in both cancer-associated fibroblasts and breast cancer cells mediates a feedforward IL1beta/IL1R1 response. Sci Rep 6:24354PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Biffi G, Oni TE, Spielman B et al (2019) IL1-induced JAK/STAT signaling is antagonized by TGFbeta to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov 9(2):282–301PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Krtolica A, Parrinello S, Lockett S et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98(21):12072–12077PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Orjalo AV, Bhaumik D, Gengler BK et al (2009) Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci U S A 106(40):17031–17036PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Laberge RM, Sun Y, Orjalo AV et al (2015) MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat Cell Biol 17(8):1049–1061PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Perrier S, Caldefie-Chezet F, Vasson MP (2009) IL-1 family in breast cancer: potential interplay with leptin and other adipocytokines. FEBS Lett 583(2):259–265PubMedCrossRefPubMedCentralGoogle Scholar
  144. 144.
    Dirat B, Bochet L, Dabek M et al (2011) Cancer-associated adipocytes exhibit an activated phenotype and contribute to breast cancer invasion. Cancer Res 71(7):2455–2465PubMedCrossRefPubMedCentralGoogle Scholar
  145. 145.
    Incio J, Liu H, Suboj P et al (2016) Obesity-induced inflammation and desmoplasia promote pancreatic cancer progression and resistance to chemotherapy. Cancer Discov 6(8):852–869PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Thacker SG, Berthier CC, Mattinzoli D et al (2010) The detrimental effects of IFN-alpha on vasculogenesis in lupus are mediated by repression of IL-1 pathways: potential role in atherogenesis and renal vascular rarefaction. J Immunol 185(7):4457–4469PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Zeisberg EM, Potenta S, Xie L et al (2007) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67(21):10123–10128CrossRefGoogle Scholar
  148. 148.
    Zeisberg EM, Tarnavski O, Zeisberg M et al (2007) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Lee JG, Ko MK, Kay EP (2012) Endothelial mesenchymal transformation mediated by IL-1beta-induced FGF-2 in corneal endothelial cells. Exp Eye Res 95(1):35–39PubMedCrossRefPubMedCentralGoogle Scholar
  150. 150.
    Song X, Krelin Y, Dvorkin T et al (2005) CD11b+/Gr-1+ immature myeloid cells mediate suppression of T cells in mice bearing tumors of IL-1beta-secreting cells. J Immunol 175(12):8200–8208PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Ghiringhelli F, Apetoh L, Tesniere A et al (2009) Activation of the NLRP3 inflammasome in dendritic cells induces IL-1beta-dependent adaptive immunity against tumors. Nat Med 15(10):1170–1178PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Hope JC, Sopp P, Collins RA et al (2001) Differences in the induction of CD8+ T cell responses by subpopulations of dendritic cells from afferent lymph are related to IL-1 alpha secretion. J Leukoc Biol 69(2):271–279PubMedPubMedCentralGoogle Scholar
  153. 153.
    Yao Y, Chen S, Cao M et al (2017) Antigen-specific CD8(+) T cell feedback activates NLRP3 inflammasome in antigen-presenting cells through perforin. Nat Commun 8:15402PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Novais FO, Carvalho AM, Clark ML et al (2017) CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-1beta production. PLoS Pathog 13(2):e1006196PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Gardella S, Andrei C, Lotti LV et al (2001) CD8(+) T lymphocytes induce polarized exocytosis of secretory lysosomes by dendritic cells with release of interleukin-1beta and cathepsin D. Blood 98(7):2152–2159PubMedCrossRefGoogle Scholar
  156. 156.
    Dinarello CA, Conti P, Mier JW (1986) Effects of human interleukin-1 on natural killer cell activity: is fever a host defense mechanism for tumor killing? Yale J Biol Med 59(2):97–106PubMedPubMedCentralGoogle Scholar
  157. 157.
    Cooper MA, Fehniger TA, Turner SC et al (2001) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97(10):3146–3151PubMedCrossRefGoogle Scholar
  158. 158.
    Hughes T, Becknell B, Freud AG et al (2010) Interleukin-1beta selectively expands and sustains interleukin-22+ immature human natural killer cells in secondary lymphoid tissue. Immunity 32(6):803–814PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Hughes T, Briercheck EL, Freud AG et al (2014) The transcription factor AHR prevents the differentiation of a stage 3 innate lymphoid cell subset to natural killer cells. Cell Rep 8(1):150–162PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    von Burg N, Chappaz S, Baerenwaldt A et al (2014) Activated group 3 innate lymphoid cells promote T-cell-mediated immune responses. Proc Natl Acad Sci U S A 111(35):12835–12840CrossRefGoogle Scholar
  161. 161.
    Acosta-Rodriguez EV, Napolitani G, Lanzavecchia A et al (2007) Interleukins 1beta and 6 but not transforming growth factor-beta are essential for the differentiation of interleukin 17-producing human T helper cells. Nat Immunol 8(9):942–949PubMedCrossRefGoogle Scholar
  162. 162.
    Sutton C, Brereton C, Keogh B et al (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203(7):1685–1691PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Revu S, Wu J, Henkel M et al (2018) IL-23 and IL-1beta drive human Th17 cell differentiation and metabolic reprogramming in absence of CD28 costimulation. Cell Rep 22(10):2642–2653PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Miyahara Y, Odunsi K, Chen W et al (2008) Generation and regulation of human CD4+ IL-17-producing T cells in ovarian cancer. Proc Natl Acad Sci U S A 105(40):15505–15510PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Gu J, Ni X, Pan X et al (2017) Human CD39(hi) regulatory T cells present stronger stability and function under inflammatory conditions. Cell Mol Immunol 14(6):521–528PubMedCrossRefGoogle Scholar
  166. 166.
    Li L, Kim J, Boussiotis VA (2010) IL-1beta-mediated signals preferentially drive conversion of regulatory T cells but not conventional T cells into IL-17-producing cells. J Immunol 185(7):4148–4153PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Voo KS, Wang YH, Santori FR et al (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci U S A 106(12):4793–4798PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Voigt C, May P, Gottschlich A et al (2017) Cancer cells induce interleukin-22 production from memory CD4(+) T cells via interleukin-1 to promote tumor growth. Proc Natl Acad Sci U S A 114(49):12994–12999PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Xue G, Jin G, Fang J et al (2019) IL-4 together with IL-1beta induces antitumor Th9 cell differentiation in the absence of TGF-beta signaling. Nat Commun 10(1):1376PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Ben-Sasson SZ, Hogg A, Hu-Li J et al (2013) IL-1 enhances expansion, effector function, tissue localization, and memory response of antigen-specific CD8 T cells. J Exp Med 210(3):491–502PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Ben-Sasson SZ, Wang K, Cohen J et al (2013) IL-1beta strikingly enhances antigen-driven CD4 and CD8 T-cell responses. Cold Spring Harb Symp Quant Biol 78:117–124PubMedCrossRefGoogle Scholar
  172. 172.
    Ben-Sasson SZ, Hu-Li J, Quiel J et al (2009) IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci U S A 106(17):7119–7124PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Ridker PM, MacFadyen JG, Thuren T et al (2017) Effect of interleukin-1beta inhibition with canakinumab on incident lung cancer in patients with atherosclerosis: exploratory results from a randomised, double-blind, placebo-controlled trial. Lancet 390(10105):1833–1842PubMedCrossRefGoogle Scholar
  174. 174.
    Hickish T, Andre T, Wyrwicz L et al (2017) MABp1 as a novel antibody treatment for advanced colorectal cancer: a randomised, double-blind, placebo-controlled, phase 3 study. Lancet Oncol 18(2):192–201PubMedCrossRefGoogle Scholar
  175. 175.
    Kurzrock R, Hickish T, Wyrwicz L et al (2019) Interleukin-1 receptor antagonist levels predict favorable outcome after bermekimab, a first-in-class true human interleukin-1alpha antibody, in a phase III randomized study of advanced colorectal cancer. Oncoimmunology 8(3):1551651PubMedCrossRefPubMedCentralGoogle Scholar
  176. 176.
    Giavridis T, van der Stegen SJC, Eyquem J et al (2018) CAR T cell-induced cytokine release syndrome is mediated by macrophages and abated by IL-1 blockade. Nat Med 24(6):731–738PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Neville ME, Pezzella KM, Schmidt K et al (1990) In vivo inhibition of tumor growth of B16 melanoma by recombinant interleukin 1 beta. II. Mechanism of inhibition: the role of polymorphonuclear leukocytes. Cytokine 2(6):456–463PubMedCrossRefPubMedCentralGoogle Scholar
  178. 178.
    Pezzella KM, Neville ME, Huang JJ (1990) In vivo inhibition of tumor growth of B16 melanoma by recombinant interleukin 1 beta. I. Tumor inhibition parallels lymphocyte-activating factor activity of interleukin 1 beta proteins. Cytokine 2(5):357–362PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Yang D, Hayashi H, Takii T et al (1997) Interleukin-1-induced growth inhibition of human melanoma cells. Interleukin-1-induced antizyme expression is responsible for ornithine decarboxylase activity down-regulation. J Biol Chem 272(6):3376–3383PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Oelmann E, Kraemer A, Serve H et al (1997) Autocrine interleukin-1 receptor antagonist can support malignant growth of glioblastoma by blocking growth-inhibiting autocrine loop of interleukin-1. Int J Cancer 71(6):1066–1076PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Mattarollo SR, Loi S, Duret H et al (2011) Pivotal role of innate and adaptive immunity in anthracycline chemotherapy of established tumors. Cancer Res 71(14):4809–4820PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Di Mitri D, Toso A, Chen JJ et al (2014) Tumour-infiltrating gr-1+ myeloid cells antagonize senescence in cancer. Nature 515(7525):134–137PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Bent R, Moll L, Grabbe S et al (2018) Interleukin-1 Beta-a friend or foe in malignancies? Int J Mol Sci 19(8):2155PubMedCentralCrossRefGoogle Scholar
  184. 184.
    Cancer Genome Atlas N (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70CrossRefGoogle Scholar
  185. 185.
    Drake CG, Stein MN (2018) The immunobiology of kidney cancer. J Clin Oncol.  https://doi.org/10.1200/JCO.2018.79.2648:JCO2018792648
  186. 186.
    Najjar YG, Rayman P, Jia X et al (2017) Myeloid-derived suppressor cell subset accumulation in renal cell carcinoma parenchyma is associated with Intratumoral expression of IL1beta, IL8, CXCL5, and Mip-1alpha. Clin Cancer Res 23(9):2346–2355PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Koch I, Depenbrock H, Danhauser-Riedl S et al (1995) Interleukin 1 modulates growth of human renal carcinoma cells in vitro. Br J Cancer 71(4):794–800PubMedPubMedCentralCrossRefGoogle Scholar
  188. 188.
    Tjomsland V, Sandnes D, Pomianowska E et al (2016) The TGFbeta-SMAD3 pathway inhibits IL-1alpha induced interactions between human pancreatic stellate cells and pancreatic carcinoma cells and restricts cancer cell migration. J Exp Clin Cancer Res 35(1):122PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Zhuang Z, Ju HQ, Aguilar M et al (2016) IL1 receptor antagonist inhibits pancreatic Cancer growth by abrogating NF-kappaB activation. Clin Cancer Res 22(6):1432–1444PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Wiedemann GM, Knott MM, Vetter VK et al (2016) Cancer cell-derived IL-1alpha induces CCL22 and the recruitment of regulatory T cells. Oncoimmunology 5(9):e1175794PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Kaneko N, Kurata M, Yamamoto T et al (2019) The role of interleukin-1 in general pathology. Inflamm Regen 39:12PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Weizhou Zhang
    • 1
    Email author
  • Nicholas Borcherding
    • 2
  • Ryan Kolb
    • 1
  1. 1.Department of PathologyImmunology and Laboratory Medicine, UF Health Cancer Center, University of FloridaGainesvilleUSA
  2. 2.Department of PathologyUniversity of IowaIowa CityUSA

Personalised recommendations