Two-Dimensional Channel Plasmons in Nonplanar Geometries

  • Paulo André Dias GonçalvesEmail author
Part of the Springer Theses book series (Springer Theses)


The ability to effectively guide electromagnetic radiation below the diffraction limit is of the utmost importance in the prospect of all-optical circuitry. Indeed, one of the most prominent applications of SPPs for optoelectronic technologies is the use of plasmonic waveguiding structures to route electromagnetic radiation in the subwavelength regime. On the other hand, the rise of graphene as a novel plasmonic material has attracted a great deal of attention owing to the prospect of long-lived, gate-tunable graphene plasmons that are capable of producing large field confinements in the THz and mid-IR. Nonplanar graphene plasmons have recently gained interest, but the investigation of graphene channel plasmons still remains largely unexplored. The goal of this chapter is to provide a comprehensive theoretical description of the salient features of graphene plasmons guided along the apex of a graphene-covered triangular wedge or groove.


  1. 1.
  2. 2.
  3. 3.
    Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Phys Today 61(5):44.
  4. 4.
    Gramotnev DK, Bozhevolnyi SI (2010) Nat Photonics 4(2):83.
  5. 5.
    Fang Y, Sun M (2015) Light Sci Appl 4(6):e294.,
  6. 6.
    Bozhevolnyi S (2008) Plasmonic nanoguides and circuits, 1st edn. Pan StanfordGoogle Scholar
  7. 7.
    Smith CLC, Stenger N, Kristensen A, Mortensen NA, Bozhevolnyi SI (2015) Nanoscale 7:9355.
  8. 8.
  9. 9.
    Moreno E, García-Vidal FJ, Rodrigo SG, Martín-Moreno L, Bozhevolnyi SI (2006) Opt Lett 31(23):3447.,
  10. 10.
    Chen Y, Nielsen TR, Gregersen N, Lodahl P, Mørk J (2010) Phys Rev B 81:125431.
  11. 11.
    Chen Y, Gregersen N, Nielsen TR, Mørk J, Lodahl P (2010) Opt Exp 18(12):12489.,
  12. 12.
    Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Phys Rev Lett 95:046802.
  13. 13.
    Søndergaard T, Novikov SM, Holmgaard T, Eriksen RL, Beermann J, Han Z, Pedersen K, Bozhevolnyi SI (2012) Nat Commun 3:969.
  14. 14.
    Raza S, Stenger N, Pors A, Holmgaard T, Kadkhodazadeh S, Wagner JB, Pedersen K, Wubs M, Bozhevolnyi SI, Mortensen NA (2014) Nat Commun 5:4125.,
  15. 15.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Nature 440:508.
  16. 16.
    Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder DL, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton LR, Hafner C, Leuthold J (2015) Nat Photonics 9:525.
  17. 17.
    Nielsen RB, Fernandez-Cuesta I, Boltasseva A, Volkov VS, Bozhevolnyi SI, Klukowska A, Kristensen A (2008) Opt Lett 33(23):2800.
  18. 18.
    Gramotnev DK, Pile DFP (2004) Appl Phys Lett 85(26):6323.
  19. 19.
    Li X, Jiang T, Shen L, Deng X (2013) Appl Phys Lett 102(3):031606.
  20. 20.
    Pile DFP, Gramotnev DK (2004) Opt Lett 29(10):1069.,
  21. 21.
    Lotan O, Smith CLC, Bar-David J, Mortensen NA, Kristensen A, Levy U (2016) ACS Photonics 3(11):2150.
  22. 22.
    Volkov VS, Bozhevolnyi SI, Rodrigo SG, Martín-Moreno L, García-Vidal FJ, Devaux E, Ebbesen TW (2009) Nano Lett 9(3):1278.
  23. 23.
    Bozhevolnyi SI, Mortensen NA (2017) Nanophotonics 6:1185.
  24. 24.
    Bermúdez-Ureña E, Gonzalez-Ballestero C, Geiselmann M, Marty R, Radko IP, Holmgaard T, Alaverdyan Y, Moreno E, García-Vidal FJ, Bozhevolnyi SI, Quidant R (2015) Nat Commun 6:7883.
  25. 25.
    Gonçalves PAD, Peres NMR (2016) An introduction to graphene plasmonics, 1st edn. World Scientific, Singapore.
  26. 26.
    García de Abajo FJ (2014) ACS Photonics 1(3):135.
  27. 27.
    Grigorenko AN, Polini M, Novoselov KS (2012) Nat Photonics 6:749.
  28. 28.
    Low T, Avouris P (2014) ACS Nano 8(2):1086.
  29. 29.
    Christensen T, Jauho AP, Wubs M, Mortensen NA (2015) Phys Rev B 91:125414.
  30. 30.
    Riso M, Cuevas M, Depine RA (2015) J Opt 17(7):075001.
  31. 31.
    Davoyan AR, Engheta N (2016) ACS Photonics 3(5):737.
  32. 32.
    Gonçalves PAD, Dias EJC, Xiao S, Vasilevskiy MI, Mortensen NA, Peres NMR (2016) ACS Photonics 3(11):2176.
  33. 33.
    Gonçalves PAD, Bozhevolnyi SI, Mortensen NA, Peres NMR (2017) Optica 4(6):595.,
  34. 34.
    Smirnova D, Mousavi SH, Wang Z, Kivshar YS, Khanikaev AB (2016) ACS Photonics 3(5):875.
  35. 35.
    Liu P, Zhang X, Ma Z, Cai W, Wang L, Xu J (2013) Opt. Express 21(26):32432.,
  36. 36.
    Kim K, Lee Z, Malone BD, Chan KT, Alemán B, Regan W, Gannett W, Crommie MF, Cohen ML, Zettl A (2011) Phys Rev B 83:245433.
  37. 37.
    Pakhnevich AA, Golod SV, Prinz VY (2015) J Phys D Appl Phys 48(43):435303.
  38. 38.
    Song Q, An M, Chen X, Peng Z, Zang J, Yang N (2016) Nanoscale 8:14943.
  39. 39.
    Zhu W, Low T, Perebeinos V, Bol AA, Zhu Y, Yan H, Tersoff J, Avouris P (2012) Nano Lett 12(7):3431.
  40. 40.
    Yang S, Wang C, Sahin H, Chen H, Li Y, Li SS, Suslu A, Peeters FM, Liu Q, Li J, Tongay S (2015) Nano Lett 15(3):1660.
  41. 41.
    Wang B, Huang M, Kim NY, Cunning BV, Huang Y, Qu D, Chen X, Jin S, Biswal M, Zhang X, Lee SH, Lim H, Yoo WJ, Lee Z, Ruoff RS (2017) Nano Lett 17(3):1467.
  42. 42.
    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Nat Photonics 7(5):394.
  43. 43.
    Abramowitz M, Stegun IA (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover, New York.
  44. 44.
    COMSOL Multiphysics.
  45. 45.
    Bozhevolnyi SI, Nerkararyan KV (2009) Opt Lett 34(13):2039.,
  46. 46.
    Bozhevolnyi SI, Nerkararyan KV (2009) Opt Exp. 17(12):10327.,
  47. 47.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing. Cambridge University Press, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Nano OpticsUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations