Advertisement

Two-Dimensional Channel Plasmons in Nonplanar Geometries

  • Paulo André Dias GonçalvesEmail author
Chapter
  • 27 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The ability to effectively guide electromagnetic radiation below the diffraction limit is of the utmost importance in the prospect of all-optical circuitry. Indeed, one of the most prominent applications of SPPs for optoelectronic technologies is the use of plasmonic waveguiding structures to route electromagnetic radiation in the subwavelength regime. On the other hand, the rise of graphene as a novel plasmonic material has attracted a great deal of attention owing to the prospect of long-lived, gate-tunable graphene plasmons that are capable of producing large field confinements in the THz and mid-IR. Nonplanar graphene plasmons have recently gained interest, but the investigation of graphene channel plasmons still remains largely unexplored. The goal of this chapter is to provide a comprehensive theoretical description of the salient features of graphene plasmons guided along the apex of a graphene-covered triangular wedge or groove.

References

  1. 1.
  2. 2.
  3. 3.
    Ebbesen TW, Genet C, Bozhevolnyi SI (2008) Phys Today 61(5):44.  https://doi.org/10.1063/1.2930735
  4. 4.
    Gramotnev DK, Bozhevolnyi SI (2010) Nat Photonics 4(2):83.  https://doi.org/10.1038/nphoton.2010.282
  5. 5.
    Fang Y, Sun M (2015) Light Sci Appl 4(6):e294. https://www.nature.com/articles/lsa201567,  https://doi.org/10.1038/lsa.2015.67
  6. 6.
    Bozhevolnyi S (2008) Plasmonic nanoguides and circuits, 1st edn. Pan StanfordGoogle Scholar
  7. 7.
    Smith CLC, Stenger N, Kristensen A, Mortensen NA, Bozhevolnyi SI (2015) Nanoscale 7:9355.  https://doi.org/10.1039/C5NR01282A
  8. 8.
  9. 9.
    Moreno E, García-Vidal FJ, Rodrigo SG, Martín-Moreno L, Bozhevolnyi SI (2006) Opt Lett 31(23):3447. http://ol.osa.org/abstract.cfm?URI=ol-31-23-3447,  https://doi.org/10.1364/OL.31.003447
  10. 10.
    Chen Y, Nielsen TR, Gregersen N, Lodahl P, Mørk J (2010) Phys Rev B 81:125431.  https://doi.org/10.1103/PhysRevB.81.125431
  11. 11.
    Chen Y, Gregersen N, Nielsen TR, Mørk J, Lodahl P (2010) Opt Exp 18(12):12489. http://www.opticsexpress.org/abstract.cfm?URI=oe-18-12-12489,  https://doi.org/10.1364/OE.18.012489
  12. 12.
    Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Phys Rev Lett 95:046802.  https://doi.org/10.1103/PhysRevLett.95.046802
  13. 13.
    Søndergaard T, Novikov SM, Holmgaard T, Eriksen RL, Beermann J, Han Z, Pedersen K, Bozhevolnyi SI (2012) Nat Commun 3:969.  https://doi.org/10.1038/ncomms1976
  14. 14.
    Raza S, Stenger N, Pors A, Holmgaard T, Kadkhodazadeh S, Wagner JB, Pedersen K, Wubs M, Bozhevolnyi SI, Mortensen NA (2014) Nat Commun 5:4125. https://www.nature.com/articles/ncomms5125,  https://doi.org/10.1038/ncomms5125
  15. 15.
    Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Nature 440:508.  https://doi.org/10.1038/nature04594
  16. 16.
    Haffner C, Heni W, Fedoryshyn Y, Niegemann J, Melikyan A, Elder DL, Baeuerle B, Salamin Y, Josten A, Koch U, Hoessbacher C, Ducry F, Juchli L, Emboras A, Hillerkuss D, Kohl M, Dalton LR, Hafner C, Leuthold J (2015) Nat Photonics 9:525.  https://doi.org/10.1038/nphoton.2015.127
  17. 17.
    Nielsen RB, Fernandez-Cuesta I, Boltasseva A, Volkov VS, Bozhevolnyi SI, Klukowska A, Kristensen A (2008) Opt Lett 33(23):2800.  https://doi.org/10.1364/OL.33.002800
  18. 18.
    Gramotnev DK, Pile DFP (2004) Appl Phys Lett 85(26):6323.  https://doi.org/10.1063/1.1839283
  19. 19.
    Li X, Jiang T, Shen L, Deng X (2013) Appl Phys Lett 102(3):031606.  https://doi.org/10.1063/1.4789440
  20. 20.
    Pile DFP, Gramotnev DK (2004) Opt Lett 29(10):1069. http://ol.osa.org/abstract.cfm?URI=ol-29-10-1069,  https://doi.org/10.1364/OL.29.001069
  21. 21.
    Lotan O, Smith CLC, Bar-David J, Mortensen NA, Kristensen A, Levy U (2016) ACS Photonics 3(11):2150.  https://doi.org/10.1021/acsphotonics.6b00648
  22. 22.
    Volkov VS, Bozhevolnyi SI, Rodrigo SG, Martín-Moreno L, García-Vidal FJ, Devaux E, Ebbesen TW (2009) Nano Lett 9(3):1278.  https://doi.org/10.1021/nl900268v
  23. 23.
    Bozhevolnyi SI, Mortensen NA (2017) Nanophotonics 6:1185.  https://doi.org/10.1515/nanoph-2016-0179
  24. 24.
    Bermúdez-Ureña E, Gonzalez-Ballestero C, Geiselmann M, Marty R, Radko IP, Holmgaard T, Alaverdyan Y, Moreno E, García-Vidal FJ, Bozhevolnyi SI, Quidant R (2015) Nat Commun 6:7883.  https://doi.org/10.1038/ncomms8883
  25. 25.
    Gonçalves PAD, Peres NMR (2016) An introduction to graphene plasmonics, 1st edn. World Scientific, Singapore.  https://doi.org/10.1142/9948
  26. 26.
    García de Abajo FJ (2014) ACS Photonics 1(3):135.  https://doi.org/10.1021/ph400147y
  27. 27.
    Grigorenko AN, Polini M, Novoselov KS (2012) Nat Photonics 6:749. https://doi.org/10.1038/nphoton.2012.262
  28. 28.
    Low T, Avouris P (2014) ACS Nano 8(2):1086.  https://doi.org/10.1021/nn406627u
  29. 29.
    Christensen T, Jauho AP, Wubs M, Mortensen NA (2015) Phys Rev B 91:125414.  https://doi.org/10.1103/PhysRevB.91.125414
  30. 30.
    Riso M, Cuevas M, Depine RA (2015) J Opt 17(7):075001.  https://doi.org/10.1088/2040-8978/17/7/075001
  31. 31.
    Davoyan AR, Engheta N (2016) ACS Photonics 3(5):737.  https://doi.org/10.1021/acsphotonics.5b00503
  32. 32.
    Gonçalves PAD, Dias EJC, Xiao S, Vasilevskiy MI, Mortensen NA, Peres NMR (2016) ACS Photonics 3(11):2176.  https://doi.org/10.1021/acsphotonics.6b00674
  33. 33.
    Gonçalves PAD, Bozhevolnyi SI, Mortensen NA, Peres NMR (2017) Optica 4(6):595. http://www.osapublishing.org/optica/abstract.cfm?URI=optica-4-6-595,  https://doi.org/10.1364/OPTICA.4.000595
  34. 34.
    Smirnova D, Mousavi SH, Wang Z, Kivshar YS, Khanikaev AB (2016) ACS Photonics 3(5):875.  https://doi.org/10.1021/acsphotonics.6b00116
  35. 35.
    Liu P, Zhang X, Ma Z, Cai W, Wang L, Xu J (2013) Opt. Express 21(26):32432. http://www.opticsexpress.org/abstract.cfm?URI=oe-21-26-32432,  https://doi.org/10.1364/OE.21.032432
  36. 36.
    Kim K, Lee Z, Malone BD, Chan KT, Alemán B, Regan W, Gannett W, Crommie MF, Cohen ML, Zettl A (2011) Phys Rev B 83:245433.  https://doi.org/10.1103/PhysRevB.83.245433
  37. 37.
    Pakhnevich AA, Golod SV, Prinz VY (2015) J Phys D Appl Phys 48(43):435303.  https://doi.org/10.1088/0022-3727/48/43/435303
  38. 38.
    Song Q, An M, Chen X, Peng Z, Zang J, Yang N (2016) Nanoscale 8:14943.  https://doi.org/10.1039/C6NR01992G
  39. 39.
    Zhu W, Low T, Perebeinos V, Bol AA, Zhu Y, Yan H, Tersoff J, Avouris P (2012) Nano Lett 12(7):3431.  https://doi.org/10.1021/nl300563h
  40. 40.
    Yang S, Wang C, Sahin H, Chen H, Li Y, Li SS, Suslu A, Peeters FM, Liu Q, Li J, Tongay S (2015) Nano Lett 15(3):1660.  https://doi.org/10.1021/nl504276u
  41. 41.
    Wang B, Huang M, Kim NY, Cunning BV, Huang Y, Qu D, Chen X, Jin S, Biswal M, Zhang X, Lee SH, Lim H, Yoo WJ, Lee Z, Ruoff RS (2017) Nano Lett 17(3):1467.  https://doi.org/10.1021/acs.nanolett.6b04459
  42. 42.
    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Nat Photonics 7(5):394.  https://doi.org/10.1038/nphoton.2013.57
  43. 43.
    Abramowitz M, Stegun IA (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Dover, New York. http://people.math.sfu.ca/~cbm/aands/
  44. 44.
    COMSOL Multiphysics. www.comsol.com
  45. 45.
    Bozhevolnyi SI, Nerkararyan KV (2009) Opt Lett 34(13):2039. http://ol.osa.org/abstract.cfm?URI=ol-34-13-2039,  https://doi.org/10.1364/OL.34.002039
  46. 46.
    Bozhevolnyi SI, Nerkararyan KV (2009) Opt Exp. 17(12):10327. http://www.opticsexpress.org/abstract.cfm?URI=oe-17-12-10327,  https://doi.org/10.1364/OE.17.010327
  47. 47.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes: the art of scientific computing. Cambridge University Press, New YorkGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Center for Nano OpticsUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations