Guided Motion Knees

Do Guided Motion Designs Have Advantages over the CR and PS?
  • Peter S. Walker


A Guided Motion knee is one with features other than basic bearing surfaces, to guide or control the motion in prescribed ways, usually to provide some resemblance to anatomic knee motion. Among the earliest knees were those which allowed freedom of rotation of the femoral component on the tibia about a central axis, the UCI and the Variable Axis being two examples. These designs allowed for the axial rotation which occurs in function as well as anterior-posterior stability. Reproducing the function of the menisci was a logical goal in that they maintain a large area of contact, minimize contact stresses, and buffer the femur at the extremes of motion. Meniscal bearing knees were the result, including the Oxford and Minns. An evolution of this concept was the LCS rotating platform, which also provided freedom of internal-external rotation. Based on experimental data that the knee pivoted about the medial side, due to medial stability and lateral mobility, medial pivot knees were invented and have shown positive clinical feedback. Biomimetic knees, either imitating anatomic geometry or motion, have been challenging in that several designs have been invented, but there has been limited experience so far. This class of knee has a high but as yet unrealized potential.


Guided motion knee Meniscal bearing knee Rotating platform knee Rotational freedom Medial pivot knee Anatomic laxity and stability Anatomic motion 


  1. Amiri S, Cooke TDV, Wyss UP. Conceptual design for condylar guiding features of a total knee replacement. J Med Devices. 2011;5(2):025001.CrossRefGoogle Scholar
  2. Blaha JD. A medial pivot geometry. Orthopedics. 2002;25(9):963–4.PubMedPubMedCentralGoogle Scholar
  3. Blaha JD. The rationale for a total knee implant that confers anteroposterior stability throughout range of motion. J Arthroplast. 2004;19(4 Suppl 1):22–6.CrossRefGoogle Scholar
  4. Blaha JD, Mancinelli CA, Simons WH, Kish VL, Thyagarajan G. Kinematics of the human knee using an open chain cadaver model. Clin Orthop Relat Res. 2003;410:25–34.CrossRefGoogle Scholar
  5. Buechel FF, Pappas MJ. The New Jersey low-contact-stress knee replacement system: biomechanical rationale and review of the first 123 cemented cases. Arch Orthop Trauma Surg. 1986;105(4):197–204.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buechel FF Sr, Buechel FF Jr, Pappas MJ, D’Alessio J. Twenty-year evaluation of meniscal bearing and rotating platform knee replacements. Clin Orthop Relat Res. 2001;388:41–50.CrossRefGoogle Scholar
  7. Bullough P, Goodfellow J, Greenwald AS, O’Connor J. Incongruent surfaces in the human hip joint. Nature. 1968;217(5135):1290.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bullough PG, Munuera L, Murphy J, Weinstein AM. The strength of the menisci of the knee as it relates to their fine structure. J Bone Joint Surg. 1970;52(3):564–7.CrossRefGoogle Scholar
  9. Bytgyqi D, Shabani B, Cheze L, Neyret P, Lustig S. Dores a third condyle TKA restore normal gait kinematics in varus knes? In vivo kinematic analysis. Arch Orthop Trauma Surg. 2017;137(3):409–16.CrossRefGoogle Scholar
  10. Eftekhar NS. Total knee-replacement arthroplasty. Results with the intramedullary adjustable total knee prosthesis. J Bone Joint Surg Am. 1983;65(3):293–309.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Evanski PM, Waugh TR, Orofino CF, Anzel SH. UCI knee replacement. Clin Orthop Relat Res. 1976;120:33–8.Google Scholar
  12. Feng Y, Tsai T-Y, Li J-S, Wang S, Hu H, Zhang C, Rubash H, Li G. Motion of the femoral condyles in flexion and extension during a continuous lunge. J Orthop Res. 2015;33:591–7.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Floerkemeier T, Frosch KH, Wachowski M, et al. Physiologically shaped knee arthroplasty induces natural roll-back. Technol Health Care. 2011;19(2):91–102.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Freeman MAR, Pinskerova V. The movement of the normal tibio-femoral joint. J Biomech. 2005;39:197–208.CrossRefGoogle Scholar
  15. Frosch KH, Floerkemeier T, Abisht C, Adam P, Dathe H, Fanghanel J, Srurme KL, Kubein-Meesenburg D, Nagerl H. A novel knee endoprosthesis with a physiological joint shape. Part 1: biomechanical basics and tribological study. Unfallchirurg. 2009;112(2):1687–175.Google Scholar
  16. Goodfellow J, O’Connor J. The mechanics of the knee and prosthesis design. J Bone Joint Surg. 1978;60-b(3):358–69.CrossRefGoogle Scholar
  17. Gray HA, Guan S, Thomeer LT, Schache AG, Stieger R, Pandy MG. Three-dimensional motion of the knee-joint complex during normal walking revealed by mobile biplane x-ray imaging. J Orthop Res. 2019;37:615–30.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Greenwald AS, Haynes DW. Weight-bearing areas in the human hip joint. J Bone Joint Surg. 1972;54(1):157–63.CrossRefGoogle Scholar
  19. Haider H, Garvin K. Rotating platform versus fixed-bearing total knees: an in vitro study of wear. Clin Orthop Relat Res. 2008;466(11):2677–85.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hamelynck KJ. The history of mobile-bearing total knee replacement systems. Orthopedics. 2006;29(9 Suppl):S7–12.PubMedPubMedCentralGoogle Scholar
  21. Iwaki H, Pinskerova V, Freeman MAR. Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J Bone Joint Surg Br. 2000;82(8):1190–5.CrossRefGoogle Scholar
  22. Krause WR, Pope MH, Johnson RJ, Wilder DG. Mechanical changes in the knee after meniscectomy. J Bone Joint Surg Am. 1976;58(5):599–604.CrossRefPubMedPubMedCentralGoogle Scholar
  23. LaCour MT, Sharma A, Carr CB, Komistek RD, Dennis DA. Confirmation of long-term in vivo bearing mobility in eight rotating-platform TKAs. Clin Orthop Relat Res. 2014;472(9):2766–73.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Liu YL, Chen WC, Yeh WL, et al. Mimicking anatomical condylar configuration into knee prosthesis could improve knee kinematics after TKA – a computational simulation. Clin Biomech (Bristol, Avon). 2012;27(2):176–81.CrossRefGoogle Scholar
  25. Macheras GA, Galanakos SP, Lepetsos P, Anastasopoulos PP, Papadakis SA. A long term clinical outcome of the Medial Pivot Knee Arthroplasty System. Knee. 2017;24(2):447–53.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Mannan K, Scott G. The Medial Rotation total knee replacement: a clinical and radiological review at a mean follow-up of six years. J Bone Joint Surg. 2009;91(6):750–6.CrossRefGoogle Scholar
  27. Matthews LS, Sonstegard D, Kaufer H. Impact considerations in prosthetic loosening. In: Proceedings Orthopaedic Research Society, San Fransisco, 27 February–1 March, 1975.Google Scholar
  28. Meftah M, Ranawat AS, Ranawat CS. Ten-year follow-up of a rotating-platform, posterior-stabilized total knee arthroplasty. J Bone Joint Surg Am. 2012;94(5):426–32.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Minns RJ. The Minns meniscal knee prosthesis: biomechanical aspects of the surgical procedure and a review of the first 165 cases. Arch Orthop Trauma Surg. 1989;108(4):231–5.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Minns RJ, Campbell J. The mechanical testing of a sliding meniscus knee prosthesis. Clin Orthop Relat Res. 1978;137:268–75.Google Scholar
  31. Morra EA, Heim CS, Greenwald AS. Preclinical computational models: predictors of tibial insert damage patterns in total knee arthroplasty: AAOS exhibit selection. J Bone Joint Surg Am. 2012;94(18):e137(131–5).CrossRefGoogle Scholar
  32. Murray DG. Total knee replacement with a variable axis knee prosthesis. Orthop Clin North Am. 1982;13(1):155–72.PubMedPubMedCentralGoogle Scholar
  33. O’Connor JJ, Shercliff TL, Biden E, Goodfellow JW. The geometry of the knee in the sagittal plane. Proc Inst Mech Eng H J Eng Med. 1989;203(4):223–33.CrossRefGoogle Scholar
  34. Pandit H, Hamilton TW, Jenkins C, Mellon SJ, Dodd CA, Murray DW. The clinical outcome of minimally invasive Phase 3 Oxford unicompartmental knee arthroplasty: a 15-year follow-up of 1000 UKAs. Bone Joint J. 2015;97-b(11):1493–500.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Pinskerova V, Johal P, Nakagawa S, Sosna A, Williams A, Gedroyc W, Freeman MAR. Does the femur roll-back with flexion? J Bone Joint Surg. 2004;86(6):925–31.CrossRefGoogle Scholar
  36. Price AJ, O’Connor JJ, Murray DW, Dodd CA. Goodfellow JW. A history of Oxford unicompartmental knee arthroplasty. Orthopedics. 2007;30(5 Suppl):7–10.PubMedPubMedCentralGoogle Scholar
  37. Pritchett JW. Patient preferences in knee prostheses. J Bone Joint Surg. 2004;86(7):979–82.CrossRefGoogle Scholar
  38. Pritchett JW. Patients prefer a bicruciate-retaining or the medial pivot total knee prosthesis. J Arthroplast. 2011;26(2):224–8.CrossRefGoogle Scholar
  39. Reynolds RJ, Walker PS, Buza J. Mechanisms of anterior-posterior stability of the knee joint under load-bearing. J Biomech. 2017;57:39–45.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Rovick JS, Reuben JD, Schrager RJ, Walker PS. Relation between knee motion and ligament length patterns. Clin Biomech (Bristol, Avon). 1991;6(4):213–20.CrossRefGoogle Scholar
  41. Rullkoetter PJ, Fitzpatrick CK, Clary CW. How can we use computational modeling to improve total knee arthroplasty? Modeling stability and mobility in the implanted knee. J Am Acad Orthop Surg. 2017;25(Suppl 1):S33–s39.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Scott G, Imam MA, Eifert A, et al. Can a total knee arthroplasty be both rotationally unconstrained and anteroposteriorly stabilised? A pulsed fluoroscopic investigation. Bone Joint Res. 2016;5(3):80–6.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Seedhom BB. Loadbearing function of the menisci. Physiotherapy. 1976;62(7):223.PubMedPubMedCentralGoogle Scholar
  44. Shaw J, Murray DG. Knee joint simulator. Clin Orthop Rel Res. 1973;94:15–23.CrossRefGoogle Scholar
  45. Shaw JA, Murray DG. The longitudinal axis of the knee and the role of the cruciate ligaments in controlling transverse rotation. J Bone Joint Surg Am. 1974;56(8):1603–9.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Stoner K, Jerabek SA, Tow S, Wright TM, Padgett DE. Rotating-platform has no surface damage advantage over fixed-bearing TKA. Clin Orthop Relat Res. 2013;471(1):76–85.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Takei T. Artificial knee joint. US Patent 6,406,497. Filed July 2001, issued June 2002.Google Scholar
  48. Tuke MA, MAR Freeman. Knee prosthesis. US Patent 5,219,362. Filed Feb 1992, issued June 1993.Google Scholar
  49. Ueo T, Kihara Y, Ikeda N, Kawai J, Nakamura K, Hirokawa S. Deep flexion-oriented bisurface-type knee joint and its tibial rotation that attributes its high performance of flexion. J Arthroplast. 2011;26(3):476–82.CrossRefGoogle Scholar
  50. Varadarajan KM, Zumbrunn T, Rubash HE, Malchau H, Li G, Muratoglu OK. Cruciate retaining implant with biomimetic articular surface to reproduce activity dependent kinematics of the normal knee. J Arthroplast. 2015;30(12):2149–53.CrossRefGoogle Scholar
  51. Victor J, Bellemans J. Physiologic kinematics as a concept for better flexion in TKA. Clin Orthop Rel Res. 2006;452:53–8.CrossRefGoogle Scholar
  52. Wachowski MM, Fiedler C, Walde TA, Balcarek P, Schüttrumpf JP, Frosch S, Frosch KH, Fanghänel J, Gezzi G, Kubein-Meesenburg D, Nägerl H. Construction-conditioned rollback in total knee replacement: fluoroscopic results. Acta Bioeng Biomech. 2011;13(3):35–42.PubMedPubMedCentralGoogle Scholar
  53. Walker PS. A new concept in guided motion total knee arthroplasty. J Arthroplast. 2001;16(8 Suppl 1):157–63.CrossRefGoogle Scholar
  54. Walker PS. Application of a novel design method for knee replacements to achieve normal mechanics. Knee. 2014;21(2):353–8.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Walker PS, Borukhov I. Replication and substitution of anatomic stabilizing mechanisms in a total knee design. J Med Devices. 2017;11(4):041005.CrossRefGoogle Scholar
  56. Walker PS, Erkman MJ. The role of the menisci in force transmission across the knee. Clin Orthop Relat Res. 1975;109:184–92.CrossRefGoogle Scholar
  57. Walker PS, Ewald FC. Bearing surface design in total knee replacement. Eng Med. 1988;17(4):149–56.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Walker PS, Arno S, Borukhov I, Bell CP. Characterizing knee motion and laxity in a testing machine for application to total knee evaluation. J Biomech. 2015;48(13):3551–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Waugh TR, Smith RC, Orofino CF, Anzel SM. Total knee replacement: operative technic and preliminary results. Clin Orthop Relat Res. 1973;94:196–201.CrossRefGoogle Scholar
  60. Williams A, Logan M. Understanding tibio-femoral motion. Knee. 2004;11(2):81–8.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zambianchi F, Fiacchi F, Lombari V, Venturelli L, Marcovigi A, Giorgini A, Catani F. Changes in total knee arthroplasty design affect in-vivo kinematics in a redesigned total knee system: a fluoroscopy study. Clin Biomech. 2018;54:92–102.CrossRefGoogle Scholar
  62. Zumbrunn T, Varadarajan KM, Rubash HE, Malchau H, Li G, Muratoglu OK. Regaining native knee kinematics following joint arthroplasty: a novel biomimetic design with ACL and PCL preservation. J Arthroplast. 2015;30(12):2143–8.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Peter S. Walker
    • 1
  1. 1.Department of Orthopedic SurgeryNew York UniversityNew YorkUSA

Personalised recommendations