Advertisement

Experimental and Numerical Investigations on the Combined Forming Behaviour of DX51 and Fibre Reinforced Thermoplastics Under Deep Drawing Conditions

  • Bernd-Arno Behrens
  • Alexander Chugreev
  • Hendrik WesterEmail author
Chapter
  • 44 Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 93)

Abstract

In order to achieve significant weight reduction, multi-material concepts steadily gain importance in the automotive and aviation industry. In this respect, a new hybrid construction approach is the combination of steel and fibre-reinforced thermoplastics (FRT) in a sandwich design. The use of FRT provides a high lightweight potential due to the combination of low density and high tensile strength. Using thermoplastics instead of thermoset matrices enables the reduction of process times and component costs and thus becomes affordable in large-scale application. The combined forming and joining of FRT and steel sheets require elevated temperatures, which lead to a complex forming behaviour. Furthermore, the in-plane and out-of-plane material properties of the FRT, in particular the forming and failure behaviour differ strongly from that of conventional metal materials like steel or aluminium. Therefore, new material characterisation techniques, investigation methods as well as numerical models are required. However, the temperature dependent material behaviour of the steel component and the occurrence of material phenomenon such as blue brittleness also needs to be investigated and taken into account during numerical simulation. This research deals with the experimental investigation and numerical modelling of the material behaviour under deep drawing conditions in order to realize an efficient one-shot forming process with the help of numerical simulation. The numerical analysis is realised with the commercial FE-software Abaqus.

Notes

Acknowledgements

This work is funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) through the International Research Training Group 1627 “Virtual Materials and Structures and their Validation”.

References

  1. 1.
    Behrens, B. A., Vucetic, M., Neumann, A., Osiecki, T., & Grbic, N. (2015). Experimental test and FEA of a sheet metal forming process of composite material and steel foil in sandwich design using LS-DYNA. Key Engineering Materials, 651–653, 439–445.CrossRefGoogle Scholar
  2. 2.
    Behres, B.-A., Hübner, S., Grbic, N., Micke-Camuz, M., Werhane, T., & Neumann, A. N. (2017). Forming and joining of carbon-fiber-reinforced thermoplastics and sheet metal in one step. Procedia Engineering, 183, 227–232.CrossRefGoogle Scholar
  3. 3.
    Wester, H., Chugreev, A., Moritz, J., Behrens, B.-A. (2019). Experimental and numerical investigations on the material behaviour of fibre-reinforced plastics and steel for a multi-material compound production. In: R. Schmitt, G. Schuh (Hrsg.) Advances in production research. Proceedings of the 8th congress of the german academic association for production technology (WGP), Aachen, 19–20 Nov 2018. Cham, Switzerland: Springer.Google Scholar
  4. 4.
    Taha, I., Abdin, Y., & Ebeid, S. (2013). Comparison of picture frame and bias-extension tests for the characterization of shear behaviour in natural fibre woven fabrics. Fibers and Polymers, 14(2), 338–344.CrossRefGoogle Scholar
  5. 5.
    Machado, M. (2015). Modelling and simulation of continuous fibre reinforced thermoplastic-matrix composites. Dissertation Universität Linz, Linz.Google Scholar
  6. 6.
    Harrison, P., Gomes, R., & Curado-Correia, N. (2013). Press forming a 0/90 cross-ply advanced thermoplastic composite using the double-dome benchmark geometry. Composites Part A Applied Science and Manufacturing, 54, 56–69.CrossRefGoogle Scholar
  7. 7.
    Sharma, S., Potluri, P., Porat, I. (1999). Moulding analysis of 3D woven composite preforms: Mapping algorithms. In: Proceedings 12th International Conference of Composite Materials.Google Scholar
  8. 8.
    Hancock, S. G., & Potter, K. D. (2006). The use of kinematic drape modelling to inform the hand lay-up of complex composite components using woven reinforcements. Composites Part A Applied Science and Manufacturing, 37(3), 413–422.CrossRefGoogle Scholar
  9. 9.
    Gereke, T., Döbrich, O., Hübner, M., & Cherif, C. (2013). Experimental and computational composite textile reinforcement forming: A review. Composites Part A Applied Science and Manufacturing, 46, 1–10.CrossRefGoogle Scholar
  10. 10.
    Vanclooster, K., Lomov, S. V., & Verpoest, I. (2009). Experimental validation of forming simulations of fabric reinforced polymers using an unsymmetrical mould configuration. Composites Part A Applied Science and Manufacturing, 40(4), 530–539.CrossRefGoogle Scholar
  11. 11.
    Yu, W. R., Pourboghrat, F., Chung, K., Zampaloni, M., & Kang, T. J. (2002). Non-orthogonal constitutive equation for woven fabric reinforced thermoplastic composites. Composites Part A Applied Science and Manufacturing, 33(8), 1095–1105.CrossRefGoogle Scholar
  12. 12.
    Xue, P., Peng, X., & Cao, J. (2003). A non-orthogonal constitutive model for characterizing woven composites. Composites Part A Applied Science and Manufacturing, 34(2), 183–193.CrossRefGoogle Scholar
  13. 13.
    Peng, X. Q., & Cao, J. (2005). A continuum mechanics-based non-orthogonal constitutive model for woven composite fabrics. Composites Part A Applied Science and Manufacturing, 36(6), 859–874.CrossRefGoogle Scholar
  14. 14.
    Peng, X., & Rehman, Z. U. (2011). Textile composite double dome stamping simulation using a non-orthogonal constitutive model. Composites Science and Technology, 71(8), 1075–1081.CrossRefGoogle Scholar
  15. 15.
    Boisse, P., Zouari, B., & Gasser, A. (2005). A mesoscopic approach for the simulation of woven fibre composite forming. Composites Science and Technology, 65(3–4), 429–436.CrossRefGoogle Scholar
  16. 16.
    Wang, P., Hamila, N., & Boisse, P. (2013). Thermoforming simulation of multilayer composites with continuous fibres and thermoplastic matrix. Composites Part B Engineering, 52, 127–136.CrossRefGoogle Scholar
  17. 17.
    Wang, P., Hamila, N., Pineau, P., & Boisse, P. (2014). Thermomechanical analysis of thermoplastic composite prepregs using bias-extension test. Journal of Thermoplastic Composite Materials, 27(5), 679–698.CrossRefGoogle Scholar
  18. 18.
    König, W., Klocke, F. (2017). Fertigungsverfahrenn4. 6. Auflage. VDI-Verl.; Düsseldorf, Berlin [u.a.]: Springer.Google Scholar
  19. 19.
    Lange, K. (Ed.). (1990). Blechbearbeitung (2nd ed.). Berlin: Springer.Google Scholar
  20. 20.
    Götze, T. (2015). Erweiterte Blechwerkstoffmodellierung im Rahmen eines gekoppelten Spritzgieß-Blechumformprozesses. Dissertation Universität Hannover, Hannover.Google Scholar
  21. 21.
    Mazière, M., Luis, C., Marais, A., Forest, S., & Gaspérini, M. (2017). Experimental and numerical analysis of the Lüders phenomenon in simple shear. International Journal of Solids and Structures, 106–107, 305–314.CrossRefGoogle Scholar
  22. 22.
    Cottrell, A.H., Bilby, B.A. (1949). Dislocation theory of yielding and strain ageing of iron. Proceedings of the Physical Society. Section A, 62(1), 49–62.Google Scholar
  23. 23.
    Yoshida, F. (2000). A constitutive model of cyclic plasticity. International Journal of Plasticity, 16(3–4), 359–380.CrossRefGoogle Scholar
  24. 24.
    van Rooyen, G. T. (1971). Basic factors which influence the Lüders strain during discontinuous yielding. Materials Science and Engineering, 7(1), 37–48.CrossRefGoogle Scholar
  25. 25.
    Kyriakides, S., Miller, J. E. (2000). On the propagation of Lüders bands in steel strips. Journal of Applied Mechanics, 67(4).Google Scholar
  26. 26.
    DIN EN ISO 6892-1:2017-02, Metallische Werkstoffe_- Zugversuch_- Teil_1: Prüfverfahren bei Raumtemperatur (ISO_6892-1:2016); Deutsche Fassung EN_ISO_6892-1:2016.Google Scholar
  27. 27.
    Boisse, P., Hamila, N., Guzman-Maldonado, E., Madeo, A., Hivet, G., & dell’Isola, F. (2017). The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: A review. International Journal of Material Forming, 10(4), 473–492.CrossRefGoogle Scholar
  28. 28.
    Cao, J., Akkerman, R., Boisse, P., Chen, J., Cheng, H. S., de Graaf, E. F., et al. (2008). Characterization of mechanical behavior of woven fabrics: Experimental methods and benchmark results. Composites Part A Applied Science and Manufacturing, 39(6), 1037–1053.CrossRefGoogle Scholar
  29. 29.
    Prodromou, A. G., & Chen, J. (1997). On the relationship between shear angle and wrinkling of textile composite preforms. Composites Part A Applied Science and Manufacturing, 28(5), 491–503.CrossRefGoogle Scholar
  30. 30.
    Lee, W., Padvoiskis, J., Cao, J., de Luycker, E., BOISSE, P., Morestin, F., et al. (2008). Bias-extension of woven composite fabrics. International Journal of Material Forming, 1(S1), 895–898.CrossRefGoogle Scholar
  31. 31.
    Pierce, R. S., Falzon, B. G., Thompson, M. C., & Boman, R. (2015). A low-cost digital image correlation technique for characterising the shear deformation of fabrics for draping studies. Strain, 51(3), 180–189.CrossRefGoogle Scholar
  32. 32.
    SIMULIA Abaqus 6.14. (2014). Abaqus User Subroutines Reference Guide.Google Scholar
  33. 33.
    Behrens, B.-A., Bonk, C., Grbic, N., Vucetic, M. (2017). Numerical analysis of a deep drawing process with additional force transmission for an extension of the process limits. IOP Conference Series: Materials Science and Engineering, 179(1).Google Scholar
  34. 34.
    Yu, X., Cartwright, B., McGuckin, D., Ye, L., & Mai, Y.-W. (2006). Intra-ply shear locking in finite element analyses of woven fabric forming processes. Composites Part A Applied Science and Manufacturing, 37(5), 790–803.CrossRefGoogle Scholar
  35. 35.
    Khan, M. A., Mabrouki, T., Vidal-Sallé, E., BOISSE, P. (2010). Numerical and experimental analyses of woven composite reinforcement forming using a hypoelastic behaviour. Application to the double dome benchmark. Journal of Materials Processing Technology, 210(2), 378–388.Google Scholar
  36. 36.
    Badel, P., Gauthier, S., Vidal-Sallé, E., & BOISSE, P. (2009). Rate constitutive equations for computational analyses of textile composite reinforcement mechanical behaviour during forming. Composites Part A Applied Science and Manufacturing, 40(8), 997–1007.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Bernd-Arno Behrens
    • 1
  • Alexander Chugreev
    • 1
  • Hendrik Wester
    • 1
    Email author
  1. 1.Institute of Forming Technology and Machines, Leibniz Universität HannoverGarbsenGermany

Personalised recommendations