Advertisement

Micromechanically Motivated Model for Oxidation Ageing of Elastomers

  • Darcy BeurleEmail author
  • Markus André
  • Udo Nackenhorst
  • Rodrigue Desmorat
Chapter
  • 49 Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 93)

Abstract

The oxidative ageing behaviour of elastomers is of concern for product lifetime analysis and the prediction of degradation effects such as stress-softening and permanent set. Two main reactions occur during oxidative ageing; chain scission and cross-link formation which result in stress-softening, stiffening and the permanent set effect. In this model, a network dynamics model is introduced to capture the changes in polymer network topology due to chain scission and cross-link formation. The network dynamics are coupled through the shear modulus to a micro-mechanically motivated constitutive model based on the micro-sphere model using a multiplicative decomposition to capture secondary network effects. A novel mapping technique allows the degradation of both the primary and secondary networks to be efficiently handled. Numerical results indicate agreement with experimental results and show improvements over current computational approaches.

Notes

Acknowledgements

The authors would like to kindly acknowledge the funding by the DFG (Deutsche Forschungs Gemeinschaft) in the IRTG1627 framework.

References

  1. 1.
    Andrews, R. D., Tobolsky, A. V., & Hanson, E. E. (1946). The theory of permanent set at elevated temperatures in natural and synthetic rubber vulcanizates. Journal of Applied Physics, 17(5), 352–361.CrossRefGoogle Scholar
  2. 2.
    Budzien, J., Rottach, D. R., Curro, J. G., Lo, C. S., & Thompson, A. P. (2008). A new constitutive model for the chemical aging of rubber networks in deformed states. Macromolecules, 41(24), 9896–9903.CrossRefGoogle Scholar
  3. 3.
    Dargazany, R., & Itskov, M. A. (2009). Network evolution model for the anisotropic Mullins effect in carbon black filled rubbers. International Journal of Solids and Structures, 46(16), 2967–2977.CrossRefGoogle Scholar
  4. 4.
    Dippel, B., Johlitz, M., & Lion, A. (2014). Ageing of polymer bonds: A coupled chemomechanical modelling approach. Continuum Mechanics and Thermodynamics, 26(3), 247–257.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Doll, S., & Schweizerhof, K. (1999). On the development of volumetric strain energy functions. Journal of Applied Mechanics, 67, 17.CrossRefGoogle Scholar
  6. 6.
    Göktepe, S., & Miehe, C. (2005). A micro-macro approach to rubber-like materials. part iii: The micro-sphere model of anisotropic mullins-type damage. Journal of the Mechanics and Physics of Solids, 53(10), 2259 – 2283.Google Scholar
  7. 7.
    Herzig, A., Johlitz, M., & Lion, A. (2015). An experimental set-up to analyse the oxygen consumption of elastomers during ageing by using a differential oxygen analyser. Continuum Mechanics and Thermodynamics, 27(6), 1009–1017.CrossRefGoogle Scholar
  8. 8.
    Herzig, A., Sekerakova, L., Johlitz, M., & Lion, A. (2017). A modelling approach for the heterogeneous oxidation of elastomers. Continuum Mechanics and Thermodynamics, 29(5), 1149–1161.CrossRefGoogle Scholar
  9. 9.
    Hossain, M., Possart, G., & Steinmann, P. (2009). A small-strain model to simulate the curing of thermosets. Computational Mechanics, 43(6), 769–779.CrossRefGoogle Scholar
  10. 10.
    Hossain, M., Possart, G., & Steinmann, P. (2010). A finite strain framework for the simulation of polymer curing. Part II. Viscoelasticity and shrinkage. Computational Mechanics, 46(3), 363–375.Google Scholar
  11. 11.
    Johlitz, M. (2012). On the representation of ageing phenomena. The Journal of Adhesion, 88(7), 620–648.CrossRefGoogle Scholar
  12. 12.
    Johlitz, M., Diercks, N., & Lion, A. (2014). Thermo-oxidative ageing of elastomers: A modelling approach based on a finite strain theory. International Journal of Plasticity, 63, 138–151 (Bruhns: Deformation Tensors in Material Modeling in Honor of Prof. Otto T).Google Scholar
  13. 13.
    Johlitz, M., & Lion, A. (2013). Chemo-thermomechanical ageing of elastomers based on multiphase continuum mechanics. Continuum Mechanics and Thermodynamics, 25(5), 605–624.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kreiselmaier, R., Beck, K., Paimann, P., Priess, C., Traber, B., & Stein, G. (2014). Model for the oxidative ageing process of elastomers. International Polymer Science and Technology, 41(9), 1–4.CrossRefGoogle Scholar
  15. 15.
    Lion, A., & Johlitz, M. (2012). On the representation of chemical ageing of rubber in continuum mechanics. International Journal of Solids and Structures, 49(10), 1227–1240.CrossRefGoogle Scholar
  16. 16.
    Maiti, A., Small, W., Gee, R. H., Weisgraber, T. H., Chinn, S. C., Wilson, T. S., et al. (2014). Mullins effect in a filled elastomer under uniaxial tension. Physics Review E, 89, 012602.CrossRefGoogle Scholar
  17. 17.
    Miehe, C., Göktepe, S., & Lulei, F. (2004). A micro-macro approach to rubber-like materials. part i: the non-affine micro-sphere model of rubber elasticity. Journal of the Mechanics and Physics of Solids, 52(11), 2617–2660.Google Scholar
  18. 18.
    Musil, B., Johlitz, M., & Lion, A. (2018). On the ageing behaviour of NBR: Chemomechanical experiments, modelling and simulation of tension set. Continuum Mechanics and Thermodynamics.Google Scholar
  19. 19.
    Ogden, R. (1997). Non-linear elastic deformations. Dover Civil and Mechanical Engineering. USA: Dover Publications.Google Scholar
  20. 20.
    Rivlin, R. S. (1948). Large elastic deformations of isotropic materials iv. further developments of the general theory. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 241(835), 379–397.Google Scholar
  21. 21.
    Rottach, D. R., Curro, J. G., Budzien, J., Grest, G. S., Svaneborg, C., & Everaers, R. (2006). Permanent set of cross-linking networks: Comparison of theory with molecular dynamics simulations. Macromolecules, 39(16), 5521–5530.Google Scholar
  22. 22.
    Rubinstein, M., & Panyukov, S. (2002). Elasticity of polymer networks. Macromolecules, 35(17), 6670–6686.Google Scholar
  23. 23.
    Steinke, L., Weltin, U., & Flamm, M. (2011). Numerical analysis of the heterogeneous ageing of rubber products (pp. 155–160). Boca Raton: CRC Press.Google Scholar
  24. 24.
    Tobolsky, A. V., Prettyman, I. B., & Dillon, J. H. (1944). Stress relaxation of natural and synthetic rubber stocks. Journal of Applied Physics, 15(4), 380–395.CrossRefGoogle Scholar
  25. 25.
    Treloar, L. (1975). The physics of rubber elasticity. Monographs on the physics and chemistry of materials. USA: Oxford University Press.Google Scholar
  26. 26.
    Treloar, L. R. G. (1944). Stress-strain data for vulcanised rubber under various types of deformation. Transactions Faraday Society, 40, 59–70.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Darcy Beurle
    • 1
    Email author
  • Markus André
    • 2
  • Udo Nackenhorst
    • 1
  • Rodrigue Desmorat
    • 3
  1. 1.Institute for Mechanical and Computational MechanicsLeibniz Universität HannoverHannoverGermany
  2. 2.Faculty for Mechanical Engineering and BiotechnologyHochschule HannoverHannoverGermany
  3. 3.LMT, ENS CachanCNRS Université Paris SaclayCachanFrance

Personalised recommendations