Advertisement

A Semi-incremental Scheme for Cyclic Damage Computations

  • Shadi AlameddinEmail author
  • Amélie Fau
  • David Néron
  • Pierre Ladevèze
  • Udo Nackenhorst
Chapter
  • 42 Downloads
Part of the Lecture Notes in Applied and Computational Mechanics book series (LNACM, volume 93)

Abstract

High fidelity structural problems that involve nonlinear material behaviour, when subjected to cyclic loading, usually demand infeasible computational resources; this demonstrates the need for efficient model order reduction (MOR) techniques in order to shrink these demands to fit into the available means. The solution of cyclic damage problems in a model order reduction framework is investigated in this chapter. A semi-incremental framework based on a large time increment (LATIN) approach is proposed to tackle cyclic damage computations under variable amplitude and frequency loadings. The involved MOR approach provides a low-rank approximation in terms of proper generalised decomposition (PGD) of the solution. The generated PGD basis can be interpreted as a set of linear subspaces altered on the fly to the current problem settings. The adaptation of PGD to new settings is based on a greedy algorithm that may lead to a large-sized reduced order basis (ROB). Thus, different orthonormalisation and compression techniques were evaluated to ensure the optimality of the generated ROB in [1] and will be overviewed here. The proposed implementation and a displacement formulated finite element (FE) incremental framework are compared to illustrate their differences in terms of memory footprint and computational time. Numerical examples with variable loadings are discussed, and a typical implementation is provided as open-source code, available at https://gitlab.com/shadialameddin/romfem.

Notes

Acknowledgements

This research was funded by the German Research Foundation/Deutsche Forschungsgemeinschaft (DFG) through the International Research Training Group (IRTG) 1627.

References

  1. 1.
    Alameddin, S., Fau, A., Néron, D., Ladevèze, P., & Nackenhorst, U. (2019). Toward optimality of proper generalised decomposition bases. Mathematical Computational Applications, 24(1), 30.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Lemaitre, J., & Desmorat, R. (2005). Engineering damage mechanics. Berlin, Heidelberg: Springer.Google Scholar
  3. 3.
    Sobczyk, K., & Spencer, B, Jr. (1992). Random fatigue: From data to theory. Cambridge: Academic Press.zbMATHGoogle Scholar
  4. 4.
    Wang, Q., Berard, J., Rathery, S., & Bathias, C. (1999). High-cycle fatigue crack initiation and propagation behaviour of high-strength spring steel wires. Fatigue and Fracture of Engineering Materials and Structure, 22(8), 673–677.CrossRefGoogle Scholar
  5. 5.
    Deng, G., Tu, S., Zhang, X., Wang, Q., & Qin, C. (2015). Grain size effect on the small fatigue crack initiation and growth mechanisms of nickel-based superalloy GH4169. Engineering Fracture Mechanics, 134, 433–450.CrossRefGoogle Scholar
  6. 6.
    Schijve, J., & Yarema, S. (2003). Fatigue of structures and materials in the 20th century and the state of the art. Materials Science, 39(3), 307–333.CrossRefGoogle Scholar
  7. 7.
    Schijve, J. (2001). Fatigue of structures and materials. Berlin: Springer.zbMATHGoogle Scholar
  8. 8.
    F. Chinesta, A. Huerta, G. Rozza, K. Willcox. (2018). Encyclopedia of computational mechanics (Vol. 3, chapter Model Redu). Wiley, New York.Google Scholar
  9. 9.
    Giacoma, A., Dureisseix, D., Gravouil, A., & Rochette, M. (2015). Toward an optimal a priori reduced basis strategy for frictional contact problems with LATIN solver. Computer Methods in Applied Mechanics and Engineering, 283, 1357–1381.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Bhattacharyya, M., Fau, A., Nackenhorst, U., Néron, D., & Ladevèze, P. (2018). A LATIN-based model reduction approach for the simulation of cycling damage. Computer Mechanics, 62(4), 725–743.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Niroomandi, S., González, D., Alfaro, I., Bordeu, F., Leygue, A., Cueto, E., et al. (2013). Real-time simulation of biological soft tissues: A PGD approach. International Journal for Numerical Methods in Biomedical Engineering, 29(5), 586–600.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Heyberger, C., Boucard, P., & Néron, D. (2013). A rational strategy for the resolution of parametrized problems in the PGD framework. Computer Methods in Applied Mechanics and Engineering, 259, 40–49.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bhattacharyya, M., Fau, A., Nackenhorst, U., Néron, D., & Ladevèze, P. (2018). A multi-temporal scale model reduction approach for the computation of fatigue damage. Computer Methods in Applied Mechanics and Engineering, 340, 630–656.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Cline, A., & Dhillon, I. (2013). Computation of the singular value decomposition. Boca Raton: CRC Press.CrossRefGoogle Scholar
  15. 15.
    Kerfriden, P., Gosselet, P., Adhikari, S., & Bordas, S. (2011). Bridging proper orthogonal decomposition methods and augmented Newton-Krylov algorithms: An adaptive model order reduction for highly nonlinear mechanical problems. Computer Methods in Applied Mechanics and Engineering, 200(5–8), 850–866.MathSciNetCrossRefGoogle Scholar
  16. 16.
    Chinesta, F., & Ladevèze, P. (2014). Separated rrepresentations and PGD-based model reduction. In CISM International Centre for Mechanical Sciences (Vol. 554). Vienna: Springer.Google Scholar
  17. 17.
    Nasri, M., Robert, C., Ammar, A., El Arem, S., & Morel, F. (2018). Proper generalized decomposition (PGD) for the numerical simulation of polycrystalline aggregates under cyclic loading. Comptes Rendus Mécanique, 346(2), 132–151.CrossRefGoogle Scholar
  18. 18.
    El Halabi, F., González, D., Sanz-Herrera, J., & Doblaré, M. (2016). A PGD-based multiscale formulation for non-linear solid mechanics under small deformations. Computer Methods in Applied Mechanics and Engineering, 305, 806–826.MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ladevèze, P. (1999). Nonlinear computational structural mechanics., Mechanical Engineering Series New York: Springer.CrossRefGoogle Scholar
  20. 20.
    Ladevèze, P. (2016). On reduced models in nonlinear solid mechanics. European Journal of Mechanics—A/Solids, 60, 227–237.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Bhattacharyya, M. (2018). A model reduction technique in space and time for fatigue simulation (Ph.D. thesis). Leibniz Universität Hannover, Université Paris Saclay.Google Scholar
  22. 22.
    Holzapfel, G. (2000). Nonlinear solid mechanics: A continuum approach for engineering. New York: Wiley.zbMATHGoogle Scholar
  23. 23.
    Lemaitre, J. (1992). A course on damage mechanics. Berlin, Heidelberg: Springer.CrossRefGoogle Scholar
  24. 24.
    Cueto, E., González, D., & Alfaro, I. (2016). Proper generalized decompositions. Springer International Publishing.Google Scholar
  25. 25.
    Chinesta, F., Keunings, R., & Leygue, A. (2014). The proper generalized decomposition for advanced numerical simulations: A primer. Springer International Publishing.Google Scholar
  26. 26.
    Gellin, S., & Pitarresi, J. (1988). Nonlinear analysis using temporal finite elements. Engineering Analysis, 5(3), 126–132.CrossRefGoogle Scholar
  27. 27.
    Allix, O., Ladevèze, P., Gilletta, D., & Ohayon, R. (1989). A damage prediction method for composite structures. International Journal for Numerical Methods in Engineering, 27(2), 271–283.MathSciNetCrossRefGoogle Scholar
  28. 28.
    Allix, O., & Vidal, P. (2002). A new multi-solution approach suitable for structural identification problems. Computer Methods in Applied Mechanics and Engineering, 191(25–26), 2727–2758.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Vandoren, B., De Proft, K., Simone, A., & Sluys, L. (2013). A novel constrained LArge Time INcrement method for modelling quasi-brittle failure. Computer Methods in Applied Mechanics and Engineering, 265, 148–162.MathSciNetCrossRefGoogle Scholar
  30. 30.
    Bebendorf, M. (2008). Hierarchical matrices: A means to efficiently solve elliptic boundary value problems. Berlin, Heidelberg: Springer.zbMATHGoogle Scholar
  31. 31.
    Eckart, C., & Young, G. (1936). The approximation of one matrix by another of lower rank. Psychometrika, 1(3), 211–218.CrossRefGoogle Scholar
  32. 32.
    Halko, N., Martinsson, P., & Tropp, J. (2011). Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM Review, 53(2), 217–288.MathSciNetCrossRefGoogle Scholar
  33. 33.
    Golub, G., & Van Loan, C. (1996). Matrix computations (3rd ed.). Baltimore: The Johns Hopkins University Press.zbMATHGoogle Scholar
  34. 34.
    Bach, C., Ceglia, D., Song, L., & Duddeck, F. (2019). Randomized low-rank approximation methods for projection-based model order reduction of large nonlinear dynamical problems. International Journal for Numerical Methods in Engineering, 118(4), 209–241.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Shadi Alameddin
    • 1
    Email author
  • Amélie Fau
    • 1
  • David Néron
    • 2
  • Pierre Ladevèze
    • 2
  • Udo Nackenhorst
    • 1
  1. 1.IBNM, Leibniz Universität HannoverHannoverGermany
  2. 2.LMT, ENS Paris-Saclay, CNRS, Université Paris SaclayCachanFrance

Personalised recommendations