Advertisement

The Sol-Gel Chemistry of Non-oxides

  • Alain C. Pierre
Chapter
  • 32 Downloads

Abstract

This chapter gathers the most salient liquid chemistry sol-gel steps involved in the synthesis of chalcogenides and fluorides. Regarding chalcogenides, the use of alkoxides, of small atomic clusters known as Zintl clusters, and also of simple inorganic metal salts to make colloidal nanoparticles and gels, is described. The initial sol-gel steps possibly involved in the synthesis of carbides or nitrides are addressed in short sections. The chemistry of organic gels involved in the design of organic aerogels, hybrid organic-inorganic materials, and also carbon gels is the subject of a separate section. The sol-gel steps involved in the synthesis of carbon nanotube (CNT) and graphene (CG) gels are briefly described in the last section.

Keywords

Chalcogenides Fluorides Preceramic polymers Organic aerogels Carbon Graphene 

References

  1. E.M. Ahmed, J. Adv. Res. Cairo Univ. 6, 105–121 (2015)CrossRefGoogle Scholar
  2. J.D. Aiken III, R.G. Finke, J. Mol. Catal. A: Chem. 145, 1–44 (1999)CrossRefGoogle Scholar
  3. R.M. Almeida, J. Xu, Proc. SPIE 3943, 58 (2000)CrossRefGoogle Scholar
  4. R.M. Almeida, J. Xu, Chapter 6.3: Sol-Gel Processing of Sulfide Materials, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu, (Springer, New York, 2016)Google Scholar
  5. S.A. Al-Muhtaseb, J.A. Ritter, Adv. Mater. 15, 101–114 (2003)CrossRefGoogle Scholar
  6. l.U. Arachchige, S. Brock, Acc. Chem. Res. 40, 801–809 (2007a)CrossRefGoogle Scholar
  7. l.U. Arachchige, S. Brock, J. Am. Chem. Soc. 129, 1840–1841 (2007b)CrossRefGoogle Scholar
  8. P.R. Aravind, G.D. Soraru, Micropaleontol. Mesopor. Mater. 142, 511–517 (2011)CrossRefGoogle Scholar
  9. J.C. Arboleda, M. Hughes, L.A. Lucia, J. Laine, K. Ekman, O.J. Rojas, Cellulose 20, 2417–2426 (2013)CrossRefGoogle Scholar
  10. M.T.H. Aunkor, I.M. Mahbubul, R. Saidur, H.S.C. Metselaar, RSC Adv. 5, 70461–70472 (2015)CrossRefGoogle Scholar
  11. S. Bag, L.U. Arachchige, M.G. Kanatzidis, J. Mater. Chem. 8, 3628–3632 (2008)CrossRefGoogle Scholar
  12. S. Bag, P.N. Trikalitis, P.J. Chupas, et al., Science 317, 490–493 (2007)CrossRefGoogle Scholar
  13. H. Bai et al., J. Phys. Chem. C 115, 5545–5551 (2011)CrossRefGoogle Scholar
  14. R.H. Baney, Some Organometallic Routes to Ceramics, in Ultrastructure Processing of Ceramics, Glasses and Composites, ed. by L. L. Hench, D. R. Ulrich, (John Wiley, New York, 1984), pp. 245–255Google Scholar
  15. K. Barral, J. Non-Cryst. Solids 225, 46–50 (1998)CrossRefGoogle Scholar
  16. A. Bensalem, D.M. Schleich, Mater. Res. Bull. 23, 857 (1988)CrossRefGoogle Scholar
  17. M. Betz, C.A. Garcia-Gonzalez, R.P. Subrahmanyam, I. Smirnova, U. Kulozik, J. Supercrit. Fluids 72, 111–119 (2012)CrossRefGoogle Scholar
  18. G. Biesmans, D. Randall, E. Francais, M. Perrut, J. Non-Cryst. Solids 225, 36–40 (1998)CrossRefGoogle Scholar
  19. Y.D. Blum, D.B. MacQueen, H.-J. Kleebe, J. Eur. Ceram. Soc. 25, 143–149 (2005)CrossRefGoogle Scholar
  20. C.J. Brinker, J. Am. Ceram. Soc. 65, C4–C5 (1982)CrossRefGoogle Scholar
  21. S.L. Brock, L.U. Arachchige, K.K. Kalebaila, Comments Inorg. Chem. 27, 103–126 (2006)CrossRefGoogle Scholar
  22. S.L. Brock, H. Yu, Chalcogenide Aerogels, in Chapter 17: Aerogels Handbook, Advanced in Sol-Gel Derived Materials and Technology, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer Science+Business Media, New York, 2011), pp. 367–384Google Scholar
  23. M.B. Bryning et al., Carbon nanotube aerogels. Adv. Mater. 19, 661 (2007)CrossRefGoogle Scholar
  24. H. Cachet, A. Gamard, G. Campet, B. Jousseaume, T. Toupance, Thin Solid Films 388, 41–49 (2001)CrossRefGoogle Scholar
  25. R. Campostrini, M. Ischia, G. Carturan, L. Armelao, J. Sol-Gel Sci. Technol. 23, 107–117 (2002)CrossRefGoogle Scholar
  26. C.J. Carmalt, C.W. Dinnage, I.P. Parkin, J. Mater. Chem. 10, 2823–2826 (2000)CrossRefGoogle Scholar
  27. C.J. Carmalt, C.W. Dinnage, I.P. Parkin, et al., Inorg. Chem. 41, 3668–3672 (2002)CrossRefGoogle Scholar
  28. D. Chen, H. Feng, J. Li, Chem. Rev. 112, 6027–6053 (2012)CrossRefGoogle Scholar
  29. G.C. Chern, I. Lauks, J. Appl. Phys. 53, 6979 (1982)CrossRefGoogle Scholar
  30. G.C. Chern, I. Lauks, J. Appl. Phys. 54, 2701 (1983)CrossRefGoogle Scholar
  31. N.D. Cheronis, A. Kowitz, C. Chamales, R. Larson, E. Newsbury, G. Tripp, F.L. Macartor, P.G. Arvan, E.L. Gustus, P. Wildman, M. Andler, J. Am. Leather Chem. Assoc. 44, 282–308 (1949)Google Scholar
  32. Y. Chi, S. Ranjan, P.W. Chung, H.Y. Hsieh, S.M. Peng, G.H. Lee, Inorg. Chim. Acta 334, 172–182 (2002)CrossRefGoogle Scholar
  33. R.R. Chianelli, M.B. Dines, Inorg. Chem. 17, 2758 (1978)CrossRefGoogle Scholar
  34. P.J. Chupas, D.R. Corbin, V.N.M. Rao, J.C. Hanson, C.P. Grey, J. Phys. Chem. B 107, 8327–8336 (2003)CrossRefGoogle Scholar
  35. P. Colombo, G. Mera, R. Riedel, G.D. Soraru, J. Am. Ceram. Soc. 93, 1805–1837 (2010)Google Scholar
  36. G. Corbel, G. Courbion, F. Le Berre, M. Leblanc, J.M. Le Meins, V. Maisonneuve, N. Mercier, J. Fluor. Chem. 107, 193–198 (2001)CrossRefGoogle Scholar
  37. F. Dalcanale, J. Grossenbacher, G. Blugan, M.R. Gullo, A. Lauria, J. Brugger, H. Tevaearai, T. Graule, M. Niederberger, J. Kuebler, J. Eur. Ceram. Soc. 34, 3559–3570 (2014)CrossRefGoogle Scholar
  38. J.D. Desai, C.D. Lokhande, J. Non-Cryst. Solids 181, 70 (1995)CrossRefGoogle Scholar
  39. N. Diascorn, S. Calas, H. Sallee, P. Achard, A. Rigacci, J. Supercrit. Fluids 106, 76–84 (2015)CrossRefGoogle Scholar
  40. P. Dibandjo, S. Diré, F. Babonneau, G.D. Soraru, J. Non-Cryst. Solids 356, 132–140 (2010)CrossRefGoogle Scholar
  41. D. Dieterich, K. Uhlig, “Polyurethanes”. Ullmann’s Encyclopedia of Industrial Chemistry (Wiley, New York, 2000)Google Scholar
  42. B. Dietrich, J.M. Lehn, J.P. Sauvage, Tetrahedron Lett. 10, 2885–2888 (1969)CrossRefGoogle Scholar
  43. E.J. Donahue, A. Roxburgh, M. Yurchenko, Mater. Res. Bull. 33, 323 (1998)CrossRefGoogle Scholar
  44. D.R. Dreyer, A.D. Todd, C.W. Bielawski, Chem. Soc. Rev. 43, 5288–5301 (2014)CrossRefGoogle Scholar
  45. M. Dunleavy, G.C. Allen, M. Paul, Adv. Mater. 4, 424–427 (1992)CrossRefGoogle Scholar
  46. A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, S.W. Joo, Nanoscale Res. Lett. 9, 393–402 (2014)CrossRefGoogle Scholar
  47. Z.C. Eckel, C. Zhou, J.H. Martin, A.J. Jacobsen, W.B. Carter, T.A. Schaedler, Science 351, 58–62 (2016)CrossRefGoogle Scholar
  48. R.R. Escudero, M. Robitzer, F. Di Renzo, F. Quignard, Carbohydr. Polym. 75, 52–57 (2009)CrossRefGoogle Scholar
  49. P.P. Fedorov, A.A. Luginina, S.V. Kuznetsov, V.V. Osiko, J. Fluor. Chem. 132, 1012–1039 (2011)CrossRefGoogle Scholar
  50. S.H. Feng, R.R. Xu, Acc. Chem. Res. 34, 239–247 (2001)CrossRefGoogle Scholar
  51. F. Fischer, A. Rigacci, R. Pirard, S. Berthon-Fabry, P. Achard, Polymers 47, 7636–7645 (2006)CrossRefGoogle Scholar
  52. C.-H. Fischer, H. Weller, C. Lume-Pereira, E. Janata, A. Henglein, Ber. Bunsenges. Phys. Chem. 90, 46 (1986)CrossRefGoogle Scholar
  53. S. Fujihara, Chapter 5.3: Sol-Gel Processing of Fluoride and Oxyfluoride Materials, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu, (Springer, New York, 2016)Google Scholar
  54. S. Fujihara, M. Tada, T. Kimura, J. Sol-Gel Sci. Technol. 19, 311–314 (2000)CrossRefGoogle Scholar
  55. T. Gacoin, K. Lahlil, P. Larregaray, et al., J. Phys. Chem. B 105, 10228–10235 (2001)CrossRefGoogle Scholar
  56. T. Gacoin, L. Malier, J.-P. Boilot, Chem. Mater. 9, 1502–1504 (1997a)CrossRefGoogle Scholar
  57. T. Gacoin, L. Malier, J.-P. Boilot, J. Mater. Chem. 7, 859–860 (1997b)CrossRefGoogle Scholar
  58. N. Gaponik, A. Wolf, R. Marx, V. Lesnyak, K. Schilling, A. Eychmüller, Adv. Mater. 20, 4257–4262 (2008)CrossRefGoogle Scholar
  59. C.A. Garcia-Gonzalez, M. Jin, J. Gerth, C. Alvarez-Lorenzo, I. Smirnova, Carbohydr. Polym. 117, 797–806 (2015)CrossRefGoogle Scholar
  60. R. Gavillon, T. Budtova, Biomacromolecules 9, 269–277 (2008)CrossRefGoogle Scholar
  61. P. Gouerec, D. Miousse, F. Tran-Van, L.H. Dao, J. New Mater. Electrochem. Syst. 2, 221–226 (1999)Google Scholar
  62. T.A. Guiton, C.G. Pantano, Mater. Res. Soc. Symp. Proc. 121, 509 (1988)CrossRefGoogle Scholar
  63. K. Hizawa, E. Nojimoto, Kyogyo Kagaku Zasshi 59, 1445 (1956)CrossRefGoogle Scholar
  64. W. Hummers, R. Offman, J. Am. Chem. Soc. 80, 1339 (1958)CrossRefGoogle Scholar
  65. S. Iijima, Nature 354(6348), 56–58 (1991)CrossRefGoogle Scholar
  66. S. Iijima, T. Ichihashi, Nature 363, 609 (1993)CrossRefGoogle Scholar
  67. J. Innerlohinger, H. Weber, G. Kraft, Macromol. Symp. 244, 126–135 (2006)CrossRefGoogle Scholar
  68. T. Ishikawa, S. Niisaka, T. Murata, MgF2 Optical Thin Film Including Amorphous Silicon Oxide Binder, Optical Element Provided with the Same, and Method for Producing MgF2 Optical Thin Film. U.S. Patent US20110122497A1 (2011), p. 34Google Scholar
  69. T. Ishikawa, N. Shibuya, T. Yamamura, J. Mater. Sci. 25, 2809–2814 (1990)CrossRefGoogle Scholar
  70. S. Jewhurst, N. Kalyankar, Magnesium Fluoride and Magnesium Oxyfluoride Based Anti-Reflection Coatings via Chemical Solution Deposition Processes. U.S. Patent US20140147594A1 (2014), p. 15Google Scholar
  71. H. Jin, Y. Nishiyama, M. Wada, S. Kuga, Colloids Surf. A 240, 63–67 (2004)CrossRefGoogle Scholar
  72. M. Joannis, C. R. Hebd. Seances Acad. Sci. 113, 795–798 (1891)Google Scholar
  73. M. Joannis, C. R. Hebd. Seances Acad. Sci. 114, 585–587 (1892)Google Scholar
  74. C.E. Johnson, D.K. Hickey, D.C. Harris, SPIE Proc. Ser 683, 112–115 (1986)CrossRefGoogle Scholar
  75. C.E. Johnson, D.K. Hickey, D.C. Marris, Mater. Res. Soc. Symp. 73, 785–789 (1986)CrossRefGoogle Scholar
  76. K.K. Kalebaila, D.G. Georgiev, S.L. Brock, J. Non-Cryst. Solids 352, 232–240 (2006)CrossRefGoogle Scholar
  77. K. Kamiya, M. Ohya, T. Yoko, J. Non-Cryst. Solids 83, 208–222 (1986)CrossRefGoogle Scholar
  78. A. Karakuscu, A. Ponzoni, P.R. Aravind, G. Sberveglieri, G.D. Soraru, J. Am. Ceram. Soc. 96, 2366–2369 (2013)CrossRefGoogle Scholar
  79. E. Kemnitz, Chapter 2.18: Fluorolytic Sol-Gel Processes, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu, (Springer, New York, 2016)Google Scholar
  80. E. Kemnitz, U. Groß, S. Rüdiger, C.S. Shekar, Angew. Chem. Int. Ed. 42, 4251–4254 (2003)CrossRefGoogle Scholar
  81. E. Kemnitz, J. Noack, Dalton Trans. 44, 19411–19431 (2015)CrossRefGoogle Scholar
  82. E. Kemnitz, G. Scholz, S. Rudiger, Sol-Gel Synthesis of Nano-Scaled Metal Fluorides – Mechanism and Properties, in Functionalized Inorganic Fluorides, ed. by A. Tressaud, (Wiley, Hoboken, 2010), pp. 1–35Google Scholar
  83. S.S. Kistler, J. Phys. Chem. 63, 52–64 (1932)CrossRefGoogle Scholar
  84. M. Kotal, J. Kim, J. Oh, I.K. Oh, Front. Mater. 3, Art UNSP29 (2014)Google Scholar
  85. C. Kraus, J. Am. Chem. Soc. 29, 1557–1571 (1907)CrossRefGoogle Scholar
  86. C.R. Krüger, E.G. Rochow, J. Polym. Sci. A 2, 3179–3189 (1964)Google Scholar
  87. P.N. Kumta, S.H. Risbud, Ultrastructure Processing of Advanced Materials, in , ed. by D. R. Uhlmann, D. R. Ulrich, (John Wiley & Sons, Inc., New York, 1992), p. 555Google Scholar
  88. C.W. Kwon, G. Campet, J. Portier, A. Poquet, L. Fournes, C. Labrugere, B. Jousseaume, T. Toupance, J.H. Choy, M.A. Subramanian, Int. J. Inorg. Mater. 3, 211–214 (2001)CrossRefGoogle Scholar
  89. K.N. Lee, H.J. Lee, J.H. Kim, J. Supercrit. Fluids 17, 73–80 (2000)CrossRefGoogle Scholar
  90. J. Lee, Q.W. Zhang, F. Saito, J. Alloys Compd. 348, 214–219 (2003)CrossRefGoogle Scholar
  91. J.M. Lehn, J.P. Sauvage, B. Dietrich, J. Am. Chem. Soc. 92, 2916–2918 (1970)CrossRefGoogle Scholar
  92. J.H. Li et al., J. Mater. Chem. A 2, 2934–2941 (2014)CrossRefGoogle Scholar
  93. J. Livage, M. Henry, C. Sanchez, Prog. Solid State Chem. 18, 259–341 (1988)CrossRefGoogle Scholar
  94. A. Loiseau, P. Launois, P. Petit, S. Roche, J.-P. Salvetat, Understanding Carbon Nanotubes (Springer, Berlin, 2006)CrossRefGoogle Scholar
  95. S.G. Luo, H.M. Tan, J.G. Zhang, Y.J. Wu, F.K. Pei, X.H. Meng, J. Appl. Polym. Sci. 65, 1217–1225 (1997)CrossRefGoogle Scholar
  96. R.R. Mallepally, M.A. Marin, V. Surampudi, B. Subia, R.R. Rao, S.C. Kundu, M.A. McHugh, Biomed. Mater. 10, Art 035002 (2015)CrossRefGoogle Scholar
  97. C.J. Malm, G.F. Nadeau, Cellulose Acetate Carbamate. U.S. Patent 1,991,107 (1935)Google Scholar
  98. B. Marciniec, Hydrosilylation: A Comprehensive Review on Recent Advances (Springer, New York, 2009)CrossRefGoogle Scholar
  99. M.A. Marin, R.R. Mallepally, M.A. McHugh, J. Supercrit. Fluids 91, 84–89 (2014)CrossRefGoogle Scholar
  100. O. Martins, J. Xu, R.M. Almeida, J. Non-Cryst. Solids 256–257, 25 (1999)CrossRefGoogle Scholar
  101. C.K. Mathews, K.E. van Holde, Biochemistry (Benjamin/Cummings, Redwood City, 1990), pp. 183–184Google Scholar
  102. E. Matijevic, Monodispersed Colloidal Metal Oxides, Sulfides and Phosphates, in Ultrastructure Processing of Ceramics, Classes, and Composites, ed. by L. L. Hench, D. R. Ulrich, (Wiley, New York, 1984), pp. 334–352Google Scholar
  103. E. Matijevic, M.D. Wilhelmy, J. Colloid Interface Sci. 86, 476–484 (1982)CrossRefGoogle Scholar
  104. K.S. Mazdiyasni, C.M. Cook, J. Am. Ceram. Soc. 56, 628–633 (1973)CrossRefGoogle Scholar
  105. K.S. Mazdiyasni, R. West, L.D. David, J. Am. Ceram. Soc. 61, 504–508 (1978)CrossRefGoogle Scholar
  106. M.J. McAllister et al., Chem. Mater. 19, 4396–4404 (2007)CrossRefGoogle Scholar
  107. T. Mehling, G.U. Smirnova, R.H. Neubert, J. Non-Cryst. Solids 355, 2472–2479 (2009)CrossRefGoogle Scholar
  108. P.J. Melling, Am. Ceram. Soc. Bull. 63, 1427 (1984)Google Scholar
  109. Z. Miao, K. Ding, T. Wu, Z. Liu, B. Han, G. An, S. Miao, G. Yang, Microporous Mesoporous Mater. 111, 104–109 (2008)CrossRefGoogle Scholar
  110. K.S. Mikkonen, K. Parikka, A. Ghafar, M. Tenkanen, Trends Food Sci. Technol. 34, 124–136 (2013)CrossRefGoogle Scholar
  111. J.L. Mohanan, I.U. Arachchige, S.L. Brock, Science 307, 397–400 (2005)Google Scholar
  112. S. Mulik, C. Sortiriou-Leventis, Chapter 11: Resorcinol-Formaldehyde Aerogels, in Aerogels Handbook, Advanced in Sol-Gel Derived Materials and Technology, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer Science+Business Media, New York, 2011), pp. 215–234Google Scholar
  113. S. Mulik, C. Sotiriou-Leventis, N. Leventis, Chem. Mater. 20, 6985–6997 (2008)CrossRefGoogle Scholar
  114. T. Murata, H. Ishizawa, I. Motoyama, A. Tanaka, J. Sol-Gel Sci. Technol. 32, 161–165 (2004)CrossRefGoogle Scholar
  115. H. Nakagawa, M. Akiyama, Tsukuba, T. Kurosawa, A. Shiota, Polycarbosilane and Method of Producing the Same. U.S. Patent 7,358,317 B2 (15 Apr 2008), p. 12Google Scholar
  116. V.L. Nguyen, V. Proust, C. Quievryn, S. Bernard, P. Miele, G.D. Soraru, J. Am. Ceram. Soc. 97, 3143–3149 (2014)CrossRefGoogle Scholar
  117. Z. Niu et al., Adv. Mater. 24, 4144–4150 (2012)CrossRefGoogle Scholar
  118. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666–669 (2004)CrossRefGoogle Scholar
  119. C.J. O’Connor, V. Kolesnichenko, E. Carpenter, C. Sangregorio, W.L. Zhou, A. Kumbhar, J. Sims, F. Agnoli, Synth. Met. 122, 547–557 (2001)CrossRefGoogle Scholar
  120. K. Pal, A.K. Banthia, D.K. Majumdar, Des. Monomers Polym. 12, 197–220 (2009)CrossRefGoogle Scholar
  121. C.G. Pantano, P.M. Glaser, D.J. Armbrust, Nitridation of Silica Sol-Gel Thin Films, in Ultrastructure Processing of Ceramics, Classes and Composites, ed. by L. L. Hench, D. R. Ulrich, (Wiley, New York, 1984), pp. 161–177Google Scholar
  122. P.J. Pauzauskie, J.C. Crowhursta, M.A. Worsley, T.A. Laurence, D.A.L. Kilcoyne, Y. Wanga, T.M. Willey, K.S. Visbecka, S.C. Fakrab, W.J. Evans, J.M. Zaug, J.H. Satcher Jr., Proc. Natl. Acad. Sci. U. S. A. 108, 8550–8553 (2011)CrossRefGoogle Scholar
  123. R.W. Pekala, J. Mater. Sci. 24, 3221–3227 (1989)CrossRefGoogle Scholar
  124. R. Pekala, C.T. Alviso, Mater. Res. Soc. Symp. Proc. 270, 3–23 (1992)CrossRefGoogle Scholar
  125. R.W. Pekala, S.T. Mayer, J.L. Kaschmitter, F.M. Kong, Carbon Aerogels: An Update on Structure, Properties, and Applications, in Sol-Gel Process Appls, ed. by Y. A. Attia, (Plenum, New York, 1994), pp. 369–377Google Scholar
  126. F. Pendolino, N. Armata, Chapter 2: Synthesis, Characterization and Models of Graphene Oxide, in Graphene Oxide in Environmental Remediation Process, Springer Briefs in Applied Sciences and Technology, (Springer, New York, 2017), pp. 5–21CrossRefGoogle Scholar
  127. A. Pénicaud, P. Delhaes, L’Act. Chim. 336, 36–40 (2009)Google Scholar
  128. A. Pénicaud, P. Poulin, A. Derré, E. Anglaret, P. Petit, J. Am. Chem. Soc. 127, 8 (2005)CrossRefGoogle Scholar
  129. A.C. Pierre, Chapter 1.16: Biomaterials Obtained by Gelation, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu, (Springer International Publishing Switzerland, Switzerland, 2016), p. 42Google Scholar
  130. F. Placin, J.P. Desvergne, F. Cansell, J. Mater. Chem. 10, 2147–2149 (2000)CrossRefGoogle Scholar
  131. O. Poncelet, J. Guilment, D. Martin, J. Sol-Gel Sci. Technol. 13, 129–132 (1998)CrossRefGoogle Scholar
  132. G. Pour, C. Beauger, A. Rigacci, T. Budtova, J. Mater. Sci. 50, 4526–4535 (2015)CrossRefGoogle Scholar
  133. A.P. Purdy, A.D. Berry, C.F. George, Inorg. Chem. 36, 3370–3375 (1997)CrossRefGoogle Scholar
  134. L. Qiu et al., Nat. Commun. 3, 1241 (2012)CrossRefGoogle Scholar
  135. S. Quraishi, M. Martins, A.A. Barros, P. Gurikov, S.P. Raman, I. Smirnova, D. ARC, R.L. Reis, J. Supercrit. Fluids 105, 1–8 (2015)CrossRefGoogle Scholar
  136. L. Ratke, Chapter 10: Monolithic and Fibrous Cellulose Aerogels, in Aerogels Handbook, Advanced in Sol-Gel Derived Materials and Technology, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer Science+Business Media, New York, 2011), pp. 191–214Google Scholar
  137. H.K. Raut, S.S. Dinachali, K.K. Ansah-Antwi, V.A. Ganesh, S. Ramakrishna, Nanotechnology 24, 505201 (2013)CrossRefGoogle Scholar
  138. R. Riedel, G. Passing, H. Schönfelder, R.J. Brook, Nature 355, 714–717 (1992)CrossRefGoogle Scholar
  139. A. Rigacci, P. Achard, Chapter 10: Cellulosic and Polyurethane Gels, in Aerogels Handbook, Advanced in Sol-Gel Derived Materials and Technology, ed. by M. A. Aegerter, N. Leventis, M. M. Koebel, (Springer Science+Business Media, New York, 2011), pp. 191–214Google Scholar
  140. A. Rigacci, J.C. Marechal, M. Repoux, M. Moreno, P. Achard, J. Non-Cryst. Solids 350, 372–378 (2004)CrossRefGoogle Scholar
  141. A.L. Rogach, T. Franzl, T.A. Klar, J. Feldmann, N. Gaponik, V. Lesnyak, A. Shavel, A. Eychmüller, Y.P. Rakovich, J.F. Donegan, J. Phys. Chem. C 111, 14628–14637 (2007)CrossRefGoogle Scholar
  142. S. Rüdiger, U. Groß, M. Feist, H. Prescott, C.S. Shekar, S.I. Troyanov, E. Kemnitz, J. Mater. Chem. 15, 588–597 (2005)CrossRefGoogle Scholar
  143. S. Rüdiger, U. Gross, E. Kemnitz, J. Fluor. Chem. 128, 353–368 (2007)CrossRefGoogle Scholar
  144. J.S. Sanghera, C. Scotto, S. Bayya, I.D. Aggarwal, J. Non-Cryst. Solids 256–257, 31 (1999)CrossRefGoogle Scholar
  145. J.J. Santiago, M. Sano, M. Hamman, N. Chen, Thin Solid Films 147, 275 (1987)CrossRefGoogle Scholar
  146. S. Scanlon, A. Aggeli, N. Boden, R.J. Koopmans, R. Brydson, C.M. Rayner, Micro Nano Lett. 2, 24–29 (2007)CrossRefGoogle Scholar
  147. P. Schutzenberger, A. Colson, C. R. Acad. Sci. Paris 92, 1508–1511 (1881)Google Scholar
  148. A.B. Seddon, S.N.B. Hodgson, M.G. Scott, J. Mater. Sci. 26, 2599–2602 (1991)CrossRefGoogle Scholar
  149. I. Selmer, C. Kleemann, U. Kulozik, S. Heinrich, I. Smirnova, J. Supercrit. Fluids 106, 42–49 (2015)CrossRefGoogle Scholar
  150. D. Seyferth, G.H. Wiseman, Silazane Precursors to Silicon Nitride, in Ultrastructure Processing of Ceramics, Classes and Composites, ed. by L. L. Hench, D. R. Ulrich, (Wiley, New York, 1984), pp. 265–271Google Scholar
  151. Q. Shi, G. Jackowski, One-Dimensional Polyacrylamide Gel Electrophoresis, in Gel Electrophoresis of Proteins: A Practical Approach, ed. by B. D. Hames, 3rd edn., (Oxford University Press, Oxford, 1998), pp. 1–52Google Scholar
  152. J. Singh, P.K. Dutta, J. Dutta, A.J. Hunt, D.J. Macquarrie, J.H. Clark, Carbohydr. Polym. 76, 188–195 (2009)CrossRefGoogle Scholar
  153. P.R. Slater, J. Fluor. Chem. 117, 43–45 (2002)CrossRefGoogle Scholar
  154. G.D. Sorarù, E. Zera, R. Campostrini, Chapter 1.18: Aerogels from Preceramic Polymers, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu, (Springer, New York, 2016)Google Scholar
  155. M.A. Sriram, P.N. Kumta, J. Am. Ceram. Soc. 77, 1381–1384 (1994)CrossRefGoogle Scholar
  156. M.A. Sriram, P.N. Kumta, J. Mater. Chem. 8, 2441–2463 (1998)CrossRefGoogle Scholar
  157. V. Stanic, T.H. Etsell, A.C. Pierre, Mater. Lett. 31, 35–38 (1997)CrossRefGoogle Scholar
  158. V. Stanic, T.H. Etsell, A.C. Pierre, R.J. Mikula, J. Mater. Chem. 7, 105–107 (1997)CrossRefGoogle Scholar
  159. V. Stanic, A.C. Pierre, T.H. Etsell, J. Non-Cryst. Solids 220, 58–62 (1997)CrossRefGoogle Scholar
  160. V. Stanic, A.C. Pierre, T.H. Etsell, J. Am. Ceram. Soc. 83, 1790–1796 (2000)CrossRefGoogle Scholar
  161. V. Stanic, A.C. Pierre, T.H. Etsell, J. Phys. Chem. A 105, 6136–6143 (2001)CrossRefGoogle Scholar
  162. V. Stanic, A.C. Pierre, T.H. Etsell, R.J. Mikula, J. Mater. Res. 101, 363 (1996)CrossRefGoogle Scholar
  163. H.Y. Sun, Z. Xu, C. Gao, Adv. Mater. 25, 2554–2560 (2013)CrossRefGoogle Scholar
  164. R. Tabor, Microporous Isocyanate-Based Polymer Compositions and Method of Preparation. European Patent EP 0707612A1 (1994). U.S. Patent 5,478,867 (1967)Google Scholar
  165. M. Tada, S. Fujihara, T. Kimura, J. Mater. Res. 14, 1610–1616 (1999)CrossRefGoogle Scholar
  166. H. Tamon, H. Ishizaka, J. Colloid Interface Sci. 223, 305–307 (2000)CrossRefGoogle Scholar
  167. S.A. Tomas, O. Vigil, J.J. Alvarado-Gil, R. Lozada-Morales, O. Zelaya-Angel, H. Vargas, A.F. da Silva, J. Appl. Phys. 78, 2204 (1995)CrossRefGoogle Scholar
  168. C. Tsioptsias, C. Michailof, G. Stauropoulos, C. Panayiotou, Carbohydr. Polym. 76, 535–540 (2009)CrossRefGoogle Scholar
  169. C. Vallés, C. Drummond, H. Saadaoui, C.A. Furtado, M. He, O. Roubeau, L. Ortolani, M. Monthioux, A. Pénicaud, J. Am. Chem. Soc. 130, 15802 (2008)CrossRefGoogle Scholar
  170. W. Verbeek, G. Winter, Shaped Articles of Silicon Carbide and Silicon Nitride. Ger. Offen. 2,218,960, Bayer, A.G. (8 Nov 1973)Google Scholar
  171. E. Vigouroux, U. Hugot, C. R. Acad. Sci. Paris 136, 1670–1672 (1903)Google Scholar
  172. U. Wagener, C. Rüssel, J. Non-Cryst. Solids 152, 167–171 (1993)CrossRefGoogle Scholar
  173. J. Wang, M. Ellsworth, Graphene aerogels. ECS Trans. 19, 241 (2009)CrossRefGoogle Scholar
  174. G.C. Wei, C.R. Kennedy, L.A. Harris, Am. Ceram. Soc. Bull. 63, 1054–1061 (1984)Google Scholar
  175. D.A. White, S.M. Oleff, R.D. Boyer, P.A. Budinger, J.R. Fox, Adv. Ceram. Mater. 2, 45–52 (1987)CrossRefGoogle Scholar
  176. D.B. Wilhelmy, E. Matijevic, Colloids Surf. 16, 1–8 (1985)CrossRefGoogle Scholar
  177. R. Williams, P.M. Yocom, F.S. Stofko, J. Colloid Interface Sci. 106, 388–398 (1985)CrossRefGoogle Scholar
  178. R.R. Wills, R.A. Markle, S.P. Mukherjee, Am. Ceram. Soc. Bull. 62, 904–911 (1983)Google Scholar
  179. G. Winter, W. Verbeek, M. Mansmann, Production of Shaped Articles of Silicon Carbide and Silicon Nitride. Ger. Offen. 2,243,527. U.S. Patent 3,892,583 (16 May 1974)Google Scholar
  180. Worsley, T.F. Baumann, Chapter 1.18: Carbon Aerogels, in Handbook of Sol-Gel Science and Technology, ed. by L. Klein, M. Aparicio, A. Jitianu, (Springer, New York, 2016)Google Scholar
  181. M.A. Worsley, P.J. Pauzauskie, T.Y. Olson, J. Biener, J.H. Satcher, T.F. Baumann, J. Am. Chem. Soc. 132, 14067–14069 (2010)CrossRefGoogle Scholar
  182. M.A. Worsley, J.H. Satcher, T.F. Baumann, Langmuir 24, 9763–9766 (2008)CrossRefGoogle Scholar
  183. M.A. Worsley et al., Appl. Phys. Lett. 94, 073115 (2009)CrossRefGoogle Scholar
  184. M.A. Worsley et al., Chem. Commun. 48, 8428–8430 (2012)CrossRefGoogle Scholar
  185. M.A. Worsley et al., ECS J. Solid State Sci. Technol. 2(10), M3140–M3144 (2013)CrossRefGoogle Scholar
  186. J. Xu, R.M. Almeida, J. Sol-Gel Sci. Technol. 19, 243 (2000)CrossRefGoogle Scholar
  187. Y. Xu et al., ACS Nano 4, 4324 (2010)CrossRefGoogle Scholar
  188. S. Yajima, Y. Hasegawa, K. Okamura, I. Matsuzawa, Nature (London) 261, 525–527 (1978)CrossRefGoogle Scholar
  189. S. Yajima, K. Okamura, J. Hayashi, M. Omori, J. Am. Ceram. Soc. 59, 324–327 (1976)CrossRefGoogle Scholar
  190. S. Yajima, T. Shishido, M. Hamano, Nature (London) 266, 522–524 (1977)CrossRefGoogle Scholar
  191. Q. Yao, I.U. Arachchige, S.L. Brock, J. Am. Chem. Soc. 131, 2800–2801 (2009)CrossRefGoogle Scholar
  192. X. Zhang et al., J. Mater. Chem. 21, 6494–6497 (2011)CrossRefGoogle Scholar
  193. D.Y. Zhinkin, N.V. Markova, M.V. Sobolevskii, Zh. Obshch. Khim. 33, 252–255 (1963)Google Scholar
  194. J. Zhu, R.E. Marchant, Expert Rev. Med. Devices 8, 607–626 (2011)CrossRefGoogle Scholar
  195. Y.W. Zhu et al., Adv. Mater. 22, 3906–3924 (2010)CrossRefGoogle Scholar
  196. E. Zintl, J. Goubeau, W. Dullenkopf, Z. Phys. Chem. Abt. A 154, 1–46 (1931)Google Scholar
  197. E. Zintl, H. Kaiser, Z. Anorg. Allg. Chem. 211, 113–131 (1933)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Alain C. Pierre
    • 1
  1. 1.allée des écureuilsUniversité Claude Bernard-Lyon 1ROCHETAILLEE SUR SAONEFrance

Personalised recommendations