Four Domains: Cognition-Based Evolution

  • John Torday
  • William Miller Jr.


It has been previously asserted that self-referential cognition is the exact definition of the living circumstances. Once granted, this becomes the requisite platform for understanding biological development and its evolutionary ramifications over geological space–time. It is our human nature to be riveted by the expanse of intricate forms that can be appraised with our unaided senses. The dramatic transitions across the fossil record that focus on these macro-organic forms reinforce this prejudice. Who doesn’t love to think about dinosaurs? Yet, despite this ready assessment, the planet has ever been and remains a cellular world (McFall-Ngai et al. 2013). As such, it becomes incumbent to explore this stance in its fullest extent. The complete scope of the currently available evidence indicates that all life is ever enacted at the level of individual cells, even within holobionts. Therefore, the cellular form has living primacy. At the macro-organic level, life is sustained through collaborative associations that extend across four perpetual biological domains: Bacteria, Archaea, Eukaryota, and the Virome (Miller 2013, 2016a, b, 2017; Richter and King 2013; Cai et al. 2015; Torday and Miller 2016a; Miller and Torday 2018). Thus, biological and evolutionary development are the narrative of the mix and match of those perpetual four domains.


Cognition-based evolution Self-referential cognition Four domains Self-reinforcing constraint Recapitulating zygote Self-referential awareness Virosphere Boundary conditions First Principles of Physiology Natural cellular engineering Living machine Bacteria Archaea Eukaryota Virome Information cycle Niche construction 


  1. Adolphs J, Renger T (2006) How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria. Biophys J 91:2778–2797CrossRefPubMedPubMedCentralGoogle Scholar
  2. Agnati LF, Baluška F, Barlow PW, Guidolin D (2009) Mosaic, self-similarity logic and biological attraction principles: three explanatory instruments in biology. Commun Integr Biol 2:552–563CrossRefPubMedPubMedCentralGoogle Scholar
  3. Baluška F (2009) Cell-cell channels, viruses, and evolution. Ann N Y Acad Sci 1178:106–119CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baluška F, Levin M (2016) On having no head: cognition throughout biological systems. Front Psych 7:902Google Scholar
  5. Baluška F, Mancuso S (2009) Deep evolutionary origins of neurobiology: turning the essence of ‘neural’ upside-down. Commun Integr Biol 2:60–65CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barabási AL, Albert R (1999) Emergence of scaling in random networks. Science 286:509–512CrossRefPubMedPubMedCentralGoogle Scholar
  7. Barabási A-L, Oltvai AN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bechtel W (2014) Cognitive biology: surprising model organisms for cognitive science. Proc Annu Meet Cogn Sci Soc 36:36Google Scholar
  9. Cai X, Wang X, Patel S, Clapham DE (2015) Insights into the early evolution of animal calcium signaling machinery: a unicellular point of view. Cell Calcium 57:166–173CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dahlberg PD, Norris GJ, Wang C, Viswanathan S, Singh VP, Engel GS (2015) Communication: coherences observed in vivo in photosynthetic bacteria using two-dimensional electronic spectroscopy. J Chem Phys 143:101101CrossRefPubMedPubMedCentralGoogle Scholar
  11. De Loof A (2017) The evolution of “Life”: a metadarwinian integrative approach. Commun Integr Biol 10:E1301335CrossRefPubMedPubMedCentralGoogle Scholar
  12. Deacon TW (2011) Incomplete nature: how mind emerged from matter. WW Norton, New YorkGoogle Scholar
  13. Dodig-Crnkovic G (2014) Modeling life as cognitive info-computation. In: Conference on Computability in Europe. Springer, BerlinGoogle Scholar
  14. Durzyńska J, Goździcka-Józefiak A (2015) Viruses and cells intertwined since the dawn of evolution. Virol J 12:169CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ford BJ (2009) On intelligence in cells: the case for whole cell biology. Interdiscip Sci Rev 34:350–365CrossRefGoogle Scholar
  16. Ford BJ (2017) Cellular intelligence: microphenomenology and the realities of being. Prog Biophys Mol Biol 131:273–287CrossRefGoogle Scholar
  17. Forterre P, Prangishvili D (2009) The origin of viruses. Res Microbiol 160:466–472CrossRefPubMedPubMedCentralGoogle Scholar
  18. Friston K, Kilner J, Harrison L (2006) A free energy principle for the brain. J Physiol Paris 100:70–87CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gilbert SF (2014) Symbiosis as the way of eukaryotic life: the dependent co-origination of the body. J Biosci 39:201–209PubMedCrossRefGoogle Scholar
  20. Guth JA (2017) Pre-biotic evolution: II. Pre-biotic chemical oscillations and linked reaction sequences.
  21. Holmes EC (2011) What does virus evolution tell us about virus origins? J Virol 85:5247–5251CrossRefPubMedPubMedCentralGoogle Scholar
  22. Igamberdiev AU, Shklovskiy-Kordi NE (2017) The quantum basis of spatiotemporality in perception and consciousness. Prog Biophys Mol Biol 130:15–25CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabási A-L (2000) The large-scale organization of metabolicnetworks. Nature 407:651–654CrossRefPubMedPubMedCentralGoogle Scholar
  24. Keijzer FA (2017) Evolutionary convergence and biologically embodied cognition. Interface Focus 7:20160123CrossRefPubMedPubMedCentralGoogle Scholar
  25. Koonin EV (2015) Origin of eukaryotes from within archaea, archaeal eukaryome and bursts of gene gain: eukaryogenesis just made easier? Philos Trans R Soc B 370:20140333CrossRefGoogle Scholar
  26. Koonin EV, Dolja VV (2014) Virus world as an evolutionary network of viruses and capsidless selfish elements. Microbiol Mol Biol Rev 78:278–303CrossRefPubMedPubMedCentralGoogle Scholar
  27. Koonin EV, Wolf YI (2012) Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect 2:119Google Scholar
  28. Koseska A, Bastiaens PI (2017) Cell signaling as a cognitive process. EMBO J 36:568–558CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lintilhac PM (1999) Toward a theory of cellularity—Speculations on the nature of the living cell. Bioscience 49:59–68CrossRefPubMedPubMedCentralGoogle Scholar
  30. Ludmir EB, Enquist LW (2009) Viral genomes are part of the phylogenetic tree of life. Nat Rev Microbiol 7:615–615CrossRefGoogle Scholar
  31. Lyon P (2015) The cognitive cell: bacterial behavior reconsidered. Front Microbiol 6:264PubMedPubMedCentralGoogle Scholar
  32. Majumdar S, Pal S (2017) Bacterial intelligence: imitation games, time-sharing, and long-range quantum coherence. J Cell Commun Signal 11:281–284CrossRefPubMedPubMedCentralGoogle Scholar
  33. Maturana HR, Varela FJ (1980) Problems in the neurophysiology of cognition. In: Autopoiesis and cognition. Springer, DordrechtCrossRefGoogle Scholar
  34. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci 110:3229–3236CrossRefPubMedPubMedCentralGoogle Scholar
  35. Miller WB (2013) The microcosm within: evolution and extinction in the hologenome. Universal Publishers, Boca RatonGoogle Scholar
  36. Miller WB (2016a) Cognition, information fields and hologenomic entanglement: evolution in light and shadow. Biology (Basel) 5(2):21Google Scholar
  37. Miller WB (2016b) The eukaryotic microbiome: origins and implications for fetal and neonatal life. Front Pediatr 4:96CrossRefPubMedPubMedCentralGoogle Scholar
  38. Miller WB (2017) Biological information systems: evolution as cognition-based information management. Prog Biophys Mol Biol 134:1–36CrossRefPubMedPubMedCentralGoogle Scholar
  39. Miller WB Jr, Torday JS (2018) Four domains: the fundamental unicell and Post-Darwinian cognition-based evolution. Prog Biophys Mol Biol 140:49–73PubMedCrossRefGoogle Scholar
  40. Miller WB, Torday JS (2017) A systematic approach to cancer: evolution beyond selection. Clin Transl Med 3:2Google Scholar
  41. Miller WB, Torday JS, Baluska F (2018) Biological evolution as the defense of self. Prog Biophys Mol Biol 142:54–74Google Scholar
  42. Noffke N, Christian D, Wacey D, Hazen RM, (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13, 1103–1124Google Scholar
  43. Perilla JR, Schulten K (2017) Physical properties of the HIV-1 capsid from all-atom molecular dynamics simulations. Nat Commun 8:15959–15969CrossRefPubMedPubMedCentralGoogle Scholar
  44. Richter DJ, King N (2013) The genomic and cellular foundations of animal origins. Annu Rev Genet 47:509–537CrossRefPubMedPubMedCentralGoogle Scholar
  45. Ryan FP (2009) Virolution. Harper Collins Publishers, LondonGoogle Scholar
  46. Shapiro JA (2007) Bacteria are small but not stupid: cognition, natural genetic engineering and socio-bacteriology. Stud Hist Phil Biol Biomed Sci 38:807–819CrossRefGoogle Scholar
  47. Shapiro JA (2011) Evolution: a view from the 21st century. FT Press, Upper Saddle RiverGoogle Scholar
  48. Shapiro JA (2017a) Biological action in read–write genome evolution. Interface Focus 7:20160115PubMedPubMedCentralGoogle Scholar
  49. Shapiro JA (2017b) Exploring the read-write genome: mobile DNA and mammalian adaptation. Crit Rev Biochem Mol Biol 52:1–17CrossRefPubMedPubMedCentralGoogle Scholar
  50. Shapiro JA (2017c) Living organisms author their read-write genomes in evolution. Biology 6(4):E42CrossRefPubMedPubMedCentralGoogle Scholar
  51. Snel B, Bork P, Huynen MA (2002) Genomes in flux: the evolution of archaeal and proteobacterial gene content. Gen Res 12:17–25CrossRefGoogle Scholar
  52. Takada K, Jameson SC (2009) Naive T cell homeostasis: from awareness of space to a sense of place. Nat Rev Immunol 1:823–832CrossRefGoogle Scholar
  53. Torday JS (2015a) The cell as the mechanistic basis for evolution. WIREs Syst Biol Med 7:275–284Google Scholar
  54. Torday JS (2015b) A central theory of biology. Med Hypotheses 85:49–57PubMedPubMedCentralGoogle Scholar
  55. Torday JS, Miller WB Jr (2016a) The unicellular state as a point source in a quantum biological system. Biology (Basel) 5(2):25Google Scholar
  56. Torday JS, Miller WB Jr (2016b) Biologic relativity: who is the observer and what is observed? Prog Biophys Mol Biol 121:29–34CrossRefPubMedPubMedCentralGoogle Scholar
  57. Torday JS, Miller WB Jr (2016c) Life is determined by its environment. Int J Astrobiol 15:345–350CrossRefPubMedPubMedCentralGoogle Scholar
  58. Torday JS, Miller WB Jr (2017) The resolution of ambiguity as the basis for life: a cellular bridge between Western reductionism and Eastern holism. Prog Biophys Mol Biol 131:288–297PubMedPubMedCentralGoogle Scholar
  59. Torday JS, Rehan VK (2009) Lung evolution as a cipher for physiology. Physiol Genomics 38:1–6PubMedPubMedCentralGoogle Scholar
  60. Torday JS, Rehan VK (2012) Evolutionary biology, cell-cell communication and complex disease. Wiley, HobokenGoogle Scholar
  61. Tozzi A, Sengupta B, Peters JF (2017) Gauge fields in the central nervous system. In: Opris I, Casanova MF (eds) The physics of the mind and brain disorders. Springer, ChamGoogle Scholar
  62. Trewavas AJ, Baluška F (2011) The ubiquity of consciousness. EMBO Rep 12:1221–1225CrossRefPubMedPubMedCentralGoogle Scholar
  63. Ulanowicz RE (2009) The dual nature of ecosystem dynamics. Ecol Model 220:1886–1892CrossRefGoogle Scholar
  64. Ulanowicz RE (2017) Preface: towards a global understanding of development and evolution. Prog Biophys Mol Biol 131:12–14CrossRefPubMedPubMedCentralGoogle Scholar
  65. Vallverdú J, Castro O, Mayne R, Talanov M, Levin M, Baluška F, Gunji Y, Dussutour A, Zenil H, Adamatzky, A (2017) Slime mould: the fundamental mechanisms of biological cognition. arXiv:1:712.00414v1Google Scholar
  66. Villarreal LP, Witzany G (2010) Viruses are essential agents within the roots and stem of the tree of life. J Theor Biol 262:698–710CrossRefPubMedPubMedCentralGoogle Scholar
  67. Williams TA, Foster PG, Cox CJ, Embley TM (2013) An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504:231–236CrossRefPubMedPubMedCentralGoogle Scholar
  68. Witzany G (2010) Biocommunication and natural genome editing. World J Biol Chem 1:348PubMedPubMedCentralGoogle Scholar
  69. Witzany G (2011) The agents of natural genome editing. J Mol Cell Biol 3:181–189CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • John Torday
    • 1
  • William Miller Jr.
    • 2
  1. 1.Deptartment of Pediatrics, Obstetrics and GynecologyHarbor–UCLA Medical CenterTorranceUSA
  2. 2.Physician/Independent researcherBanner Health/J.C.Lincoln Health SystemsParadise ValleyUSA

Personalised recommendations