Advertisement

Holobionts

  • John Torday
  • William Miller Jr.
Chapter
  • 51 Downloads

Abstract

In previous chapters, a differing point of initiation for evolutionary development has been introduced through concepts of information management and cell–cell communication. It has been emphasized that evolution proceeds quite differently than it had been supposed. Instead of random genetic variations based on intermittent replication errors, evolution can now be understood as a continuous self-referential process of self-modification in response to environmental stresses through natural cellular engineering and niche construction. Yet, to further comprehend how the modern synthesis must be altered, an accurate perception of the endpoint of all evolutionary processes must be explained. It is now known that all multicellular macro-organisms are holobionts. Taking ourselves as an example, it is currently estimated that there are many trillions of microbes—bacteria, viruses, fungi, and others—that are in us and on us (Sender et al. 2016). They outnumber our eukaryotic cells by a factor estimated by some to be up to 10 to 1 or more (Turnbaugh et al. 2007). When the total genetic complement of this microbial fraction is considered, the full genetic cohort of the associated microbiome outnumbers our innate genetic complement by perhaps as much as 100 to 1 (Bäckhed et al. 2005).

Keywords

Holobiont Phenotype Quantum inference Nodal architecture Self-referential cognition Microbial genes Enterotype Nested ecology Microbiome Pervasive information field Non-locality Effective information Immunology 

References

  1. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J (2014) The placenta harbors a unique microbiome. Sci Transl Med 6:237ra65CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alfano M, Ferrarese R, Locatelli I, Ventimiglia E, Ippolito S, Gallina P, Cesana D, Canducci F, Pagliardini L, Viganò P, Clementi M (2018) Testicular microbiome in azoospermic men—first evidence of the impact of an altered microenvironment. Hum Reprod 2018 33(7):1212–7Google Scholar
  3. Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307:1915–1920CrossRefPubMedPubMedCentralGoogle Scholar
  4. Baluška F, Miller WB Jr (2018) Senomic view of the cell: senome versus genome. Commun Integr Biol 11(3):1–9PubMedPubMedCentralGoogle Scholar
  5. Bohm DJ, Hiley BJ (1975) On the intuitive understanding of nonlocality as implied by quantum theory. Found Phys 5:93–109CrossRefGoogle Scholar
  6. Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB (2008) Decreased diversity of the fecal microbiome in recurrent Clostridium difficile—associated diarrhea. J Infect Dis 197:435–438CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chiu L, Gilbert SF (2015) The birth of the holobiont: multi-species birthing through mutual scaffolding and niche construction. Exp Cell Res 8:191–210Google Scholar
  8. Cho I, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nat Rev Genet 13:260–270CrossRefPubMedPubMedCentralGoogle Scholar
  9. Christakis NA, Fowler JH (2013) Social contagion theory: examining dynamic social networks and human behavior. Stat Med 32:556–577CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13:701–712CrossRefGoogle Scholar
  11. Dennis AR, Valacich JS (1999) Rethinking media richness: towards a theory of media synchronicity. In: Proceedings of the 32nd annual Hawaii international conference on systems sciences. IEEE Systems Sciences, Los AlamitosGoogle Scholar
  12. Fouhy F, Ross RP, Fitzgerald GF, Stanton C, Cotter PD (2012) Composition of the early intestinal microbiota: knowledge, knowledge gaps and the use of high-throughput sequencing to address these gaps. Gut Microbes 3:203–220CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fukuda S, Toh H, Hase K, Oshima K, Nakanishi Y, Yoshimura K, Tobe T, Clarke JM, Topping DL, Suzuki T, Taylor TD, Itoh K, Kikuchi J, Morita H, Hattori M, Ohno H (2011) Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547CrossRefPubMedPubMedCentralGoogle Scholar
  14. Funkhouser LJ, Bordenstein SR (2013) Mom knows best: the universality of maternal microbial transmission. PLoS Biol 11:e1001631CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gevers D, Knight R, Petrosino JF, Huang K, McGuire AL, Birren BW, Nelson KE, White O, Methé BA, Huttenhower C (2015) The human microbiome project: a community resource for the healthy human microbiome. PLoS Biol 10:e1001377CrossRefGoogle Scholar
  16. Gilbert SF (2014) Symbiosis as the way of eukaryotic life: the dependent co-origination of the body. J Biosci 39:201–209CrossRefGoogle Scholar
  17. Gilbert SF, McDonald E, Boyle N, Buttino N, Gyi L, Mai M, Prakash N, Robinson J (2010) Symbiosis as a source of selectable epigenetic variation: taking the heat for the big guy. Philos Trans R Soc Lond Ser B Biol Sci 365:671–678CrossRefGoogle Scholar
  18. Gilbert SF, Sapp J, Tauber AI (2012) A symbiotic view of life: we have never been individuals. Q Rev Biol 87:325–341CrossRefGoogle Scholar
  19. Gordon J, Knowlton N, Relman DA, Rohwer F, Youle M (2013) Superorganisms and holobionts. Microbe 8:152–153Google Scholar
  20. Gunji YP, Sonoda K, Basios V (2016) Quantum cognition based on an ambiguous representation derived from a rough set approximation. Biosystems 141:55–66CrossRefGoogle Scholar
  21. Hall WP (2005) Biological nature of knowledge in the learning organisation. Learn Organ: Intern J 12:169–188CrossRefGoogle Scholar
  22. Heijtz RD, Wang S, Anuar F, Qian Y, Björkholm B, Samuelsson A, Hibberd ML, Forssberg H, Petterson S (2011) Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci 108:3047–3052CrossRefGoogle Scholar
  23. Hoffmann AR, Proctor LM, Surette MG, Suchodolski JS (2015) The microbiome the trillions of microorganisms that maintain health and cause disease in humans and companion animals. Vet Path 53:10–21CrossRefGoogle Scholar
  24. Hooper LV, Littman DR, Macpherson AJ (2012) Interactions between the microbiota and the immune system. Science 336:1268–1273CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jiménez E, Marín ML, Martín R, Odriozola JM, Olivares M, Xaus J, Rodríguez JM (2008) Is meconium from healthy newborns actually sterile? Res Microbiol 159:187–193CrossRefGoogle Scholar
  26. Keller M, Mazuch J, Abraham U, Eom GD, Herzog ED, Volk HD, Kramer A, Maier B (2009) A circadian clock in macrophages controls inflammatory immune responses. Proc Natl Acad Sci 106:21407–21412CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kiessling S, Dubeau-Laramée G, Ohm H, Labrecque N, Olivier M, Cermakian N (2017) The circadian clock in immune cells controls the magnitude of Leishmania parasite infection. Sci Rep 7:10892CrossRefPubMedPubMedCentralGoogle Scholar
  28. Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R, Angenent LT, Ley RE (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108:4578–4585CrossRefPubMedPubMedCentralGoogle Scholar
  29. Koleva PT, Kim JS, Scott JA, Kozyrskyj AL (2015) Microbial programming of health and disease starts during fetal life. Birth Defects Res C Embryo Today 105:265–277CrossRefPubMedPubMedCentralGoogle Scholar
  30. Lee YK, Mazmanian SK (2010) Has the microbiota played a critical role in the evolution of the adaptive immune system? Science 330:1768–1773CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ling Z, Kong J, Jia P, Wei C, Wang Y, Pan Z, Huang W, Li L, Chen H, Xiang C (2010) Analysis of oral microbiota in children with dental caries by PCR-DGGE and barcoded pyrosequencing. Microb Ecol 60:677–690CrossRefPubMedPubMedCentralGoogle Scholar
  32. Łukasik P, van Asch M, Guo H, Ferrari J, Godfray CJ (2013) Unrelated facultative endosymbionts protect aphids against a fungal pathogen. Ecol Lett 16:214–218CrossRefGoogle Scholar
  33. McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci 110:3229–3236CrossRefPubMedPubMedCentralGoogle Scholar
  34. Miller WB (2013) The microcosm within: evolution and extinction in the hologenome. Universal Publishers, Boca RatonGoogle Scholar
  35. Miller WB (2016a) Cognition, information fields and hologenomic entanglement: evolution in light and shadow. Biology (Basel) 5(2):21Google Scholar
  36. Miller WB (2016b) The eukaryotic microbiome: origins and implications for fetal and neonatal life. Front Pediatr 4:96CrossRefPubMedPubMedCentralGoogle Scholar
  37. Miller WB (2017) Biological information systems: evolution as cognition-based information management. Prog Biophys Mol Biol 134:1–36CrossRefPubMedPubMedCentralGoogle Scholar
  38. Miller WB Jr, Torday JS (2018) Four domains: the fundamental unicell and Post-Darwinian cognition-based evolution. Prog Biophys Mol Biol 140:49–73CrossRefGoogle Scholar
  39. Miller WB, Torday JS, Baluska F (2018) Biological evolution as the defense of self. Prog Biophys Mol Biol 142:54–74Google Scholar
  40. Moeller AH, Li Y, Ngole EM, Ahuka-Mundeke S, Lonsdorf EV, Pusey AE, Peeters M, Hahn BH, Ochman H (2014) Rapid changes in the gut microbiome during human evolution. Proc Natl Acad Sci U S A 111:16431–16435CrossRefPubMedPubMedCentralGoogle Scholar
  41. Moon C, Baldridge MT, Wallace MA, Burnham C-AD, Virgin HW, Stappenbeck TS (2015) Vertically transmissible fecal IgA levels distinguish extra-chromosomal phenotypic variation. Nature 521:90–93CrossRefPubMedPubMedCentralGoogle Scholar
  42. Moya A, Peretó J, Gil R, Latorre A (2008) Learning how to live together: genomic insights into prokaryote—animal symbioses. Nat Rev Genet 9:218–222CrossRefGoogle Scholar
  43. Nguyen LD, Viscogliosi E, Delhaes L (2015) The lung mycobiome: an emerging field of the human respiratory microbiome. Front Microbiol 6:89PubMedPubMedCentralGoogle Scholar
  44. Nicholson DJ (2014a) The machine conception of the organism in development and evolution: a critical analysis. Stud Hist Phil Biol Biomed Sci 48:162–174CrossRefGoogle Scholar
  45. Nicholson DJ (2014b) The return of the organism as a fundamental explanatory concept in biology. Philos Compass 9:347–359CrossRefGoogle Scholar
  46. Noble D (2015) Evolution beyond Darwinism: a new conceptual framework. J Exp Biol 218:7–13PubMedPubMedCentralGoogle Scholar
  47. O’Hara AM, Shanahan F (2006) The gut flora as a forgotten organ. EMBO Rep 7:688–693CrossRefPubMedPubMedCentralGoogle Scholar
  48. Palmer C, Bik EM, DiGiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177CrossRefPubMedPubMedCentralGoogle Scholar
  49. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9:313–323CrossRefPubMedPubMedCentralGoogle Scholar
  50. Saetzler K, Sonnenschein C, Soto AM (2011) Systems biology beyond networks: generating order from disorder through self-organization. Semin Cancer Biol 21:165–174CrossRefPubMedPubMedCentralGoogle Scholar
  51. Saey TH (2014) Beyond the microbiome: the vast virome: scientists are just beginning to get a handle on the many roles of viruses in the human ecosystem. Sci News 185:18–21CrossRefGoogle Scholar
  52. Satokari R, Grönroos T, Laitinen K, Salminen S, Isolauri E (2009) Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 48:8–12Google Scholar
  53. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533CrossRefPubMedPubMedCentralGoogle Scholar
  54. Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Invest 121:2126–2132CrossRefPubMedPubMedCentralGoogle Scholar
  55. Tito RY, Macmil S, Wiley G, Najar F, Cleeland L, Qu C, Wang P, Romagne F, Leonard S, Ruiz AJ, Reinhard K, Roe BA, Lewis CM Jr (2008) Phylotyping and functional analysis of two ancient human microbiomes. PLoS One 3:e3703CrossRefPubMedPubMedCentralGoogle Scholar
  56. Tognini P, Murakami M, Sassone-Corsi P (2018) Interplay between microbes and the circadian clock. Cold Spring Harb Perspect Biol 10:a028365CrossRefPubMedPubMedCentralGoogle Scholar
  57. Torday JS, Miller WB Jr (2016b) Biologic relativity: who is the observer and what is observed? Prog Biophys Mol Biol 121:29–34CrossRefPubMedPubMedCentralGoogle Scholar
  58. Torday JS, Miller WB Jr (2016c) Life is determined by its environment. Int J Astrobiol 15:345–350CrossRefPubMedPubMedCentralGoogle Scholar
  59. Turnbaugh PJ, Ley RE, Hamady M, Fraser-liggett C, Knight R, Gordon JI (2007) The human microbiome project: exploring the microbial part of ourselves in a changing world. Nature 449:804–810CrossRefPubMedPubMedCentralGoogle Scholar
  60. Ulanowicz RE (2017) Preface: towards a global understanding of development and evolution. Prog Biophys Mol Biol 131:12–14CrossRefPubMedPubMedCentralGoogle Scholar
  61. Virgin HW (2014) The virome in mammalian physiology and disease. Cell 157:142–150CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR, Yang M, Burgess SM, Brachmann RK, Haussler D (2007) Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein. Proc Natl Acad Sci 104:18613–18618CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • John Torday
    • 1
  • William Miller Jr.
    • 2
  1. 1.Deptartment of Pediatrics, Obstetrics and GynecologyHarbor–UCLA Medical CenterTorranceUSA
  2. 2.Physician/Independent researcherBanner Health/J.C.Lincoln Health SystemsParadise ValleyUSA

Personalised recommendations