Recent Strategies on Adsorptive Removal of Precious Metals and Rare Earths Using Low-Cost Natural Adsorbents

  • Janardhan Reddy Koduru
  • Lakshmi Prasanna Lingamdinne
  • Suresh Kumar Kailasa
  • Thriveni Thenepalli
  • Yoon-Young Chang
  • Jae-Kyu Yang


Due to the variety of applications of precious metals, platinum group metals (PGMs), the separation and recovery of PGMs are excellently worthy. In general, the restoration of these PGMs is associated with their high cost and other environmental impacts. In this chapter, the basic principles of adsorption-included adsorbent, adsorbate and isotherms, and kinetics and the factors that influenced adsorption process are briefly reviewed. Finally, a brief discussion is given on the adsorptive removal of precious metals such as Pd, Pt, Au, and Ag, by using low-cost adsorbents through adsorption phenomena. It also includes the strategies involved in the adsorptive extraction of rare earth elements (REEs). This chapter mainly looks at a perspective based on the applicability of certain low-cost magnetic-based metal oxides and biosorbents employed for the adsorptive removal of PGMs and REEs from aqueous solution, spent catalysts, and industrial wastes along with necessary information of adsorption process.


Adsorption Adsorption principles Precious metals Rare earth elements Biosorption Low-cost adsorbents Natural adsorbents 



The author J.R.K. acknowledges the National Research Foundation (NRF) of Korea for financial support through funding by the Ministry of Science, ICT, and Future Planning (MSIP) (2017R1C1B5016656) of the Korean Government.


  1. Adani, K. G., Barley, R. W., & Pascoe, R. D. (2005). Silver recovery from synthetic photographic and medical X-ray process effluents using activated carbon. Minerals Engineering, 18(13–14), 1269–1276.CrossRefGoogle Scholar
  2. Alorro, R. D., Hiroyoshi, N., Kijitani, H., Ito, M., & Tsunekawa, M. (2010). On the use of magnetite for gold recovery from chloride solution. Mineral Processing & Extractive Metallurgy Review, 31(4), 201–213.CrossRefGoogle Scholar
  3. Alorro, R. D., Hiroyoshi, N., Kijitani, H., Ito, M., & Tsunekawa, M. (2015). Electrochemical investigation of gold uptake from chloride solution by magnetite. Mineral Processing and Extractive Metallurgy Review, 36(5), 332–339.CrossRefGoogle Scholar
  4. Anagnostopoulos, V. A., & Symeopoulos, B. D. (2013). Sorption of europium by malt spent rootlets, a low cost biosorbent: Effect of pH, kinetics and equilibrium studies. Journal of Radioanalytical and Nuclear Chemistry, 295(1), 7–13.CrossRefGoogle Scholar
  5. Anthemidis, A. N., Themelis, D. G., & Stratis, J. A. (2001). Stopped-flow injection liquid–liquid extraction spectrophotometric determination of palladium in airborne particulate matter and automobile catalysts. Talanta, 54(1), 37–43.CrossRefGoogle Scholar
  6. Arrascue, M. L., Garcia, H. M., Horna, O., & Guibal, E. (2003). Gold sorption on chitosan derivatives. Hydrometallurgy, 71(1–2), 191–200.CrossRefGoogle Scholar
  7. Bahramifar, N., & Yamini, Y. (2005). On-line preconcentration of some rare earth elements in water samples using C18-cartridge modified with l-(2-pyridylazo) 2-naphthol (PAN) prior to simultaneous determination by inductively coupled plasma optical emission spectrometry (ICP–OES). Analytica Chimica Acta, 540(2), 325–332.CrossRefGoogle Scholar
  8. Birungi, Z. S., & Chirwa, E. M. N. (2014). The kinetics of uptake and recovery of lanthanum using freshwater algae as biosorbents: Comparative analysis. Bioresource Technology, 160, 43–51.CrossRefGoogle Scholar
  9. Butnariu, M., Negrea, P., Lupa, L., Ciopec, M., Negrea, A., Pentea, M., Sarac, I., & Samfira, I. (2015). Remediation of rare earth element pollutants by sorption process using organic natural sorbents. International Journal of Environmental Research and Public Health, 12(9), 11278–11287.CrossRefGoogle Scholar
  10. Cadogan, E. I., Lee, C.-H., Popuri, S. R., & Lin, H.-Y. (2014). Efficiencies of chitosan nanoparticles and crab shell particles in europium uptake from aqueous solutions through biosorption: Synthesis and characterization. International Biodeterioration & Biodegradation, 95, 232–240.CrossRefGoogle Scholar
  11. Can, M., Doğan, M., İmamoğlu, M., & Arslan, M. (2016). Au (III) uptake by triazine polyamine polymers: Mechanism, kinetic and equilibrium studies. Reactive and Functional Polymers, 109, 151–161.CrossRefGoogle Scholar
  12. Chakrapani, G., Mahanta, P. L., Murty, D. S. R., & Gomathy, B. (2001). Preconcentration of traces of gold, silver and palladium on activated carbon and its determination in geological samples by flame AAS after wet ashing. Talanta, 53(6), 1139–1147.CrossRefGoogle Scholar
  13. Das, D., Jaya Sre Varshini, C., & Das, N. (2014). Recovery of lanthanum (III) from aqueous solution using biosorbents of plant and animal origin: Batch and column studies. Minerals Engineering, 69, 40–56.CrossRefGoogle Scholar
  14. Das, N. (2010). Recovery of precious metals through biosorption—A review. Hydrometallurgy, 103(1–4), 180–189.CrossRefGoogle Scholar
  15. Dolatyari, L., Yaftian, M. R., & Rostamnia, S. (2016). Adsorption characteristics of Eu (III) and Th (IV) ions onto modified mesoporous silica SBA-15 materials. Journal of the Taiwan Institute of Chemical Engineers, 60, 174–184.CrossRefGoogle Scholar
  16. Donia, A. M., Atia, A. A., & Elwakeel, K. Z. (2007). Recovery of gold (III) and silver (I) on a chemically modified chitosan with magnetic properties. Hydrometallurgy, 87(3–4), 197–206.CrossRefGoogle Scholar
  17. Ebrahimzadeh, H., Shekari, N., Tavassoli, N., Amini, M. M., Adineh, M., & Sadeghi, O. (2010). Extraction of trace amounts of silver on various amino-functionalized nanoporous silicas in real samples. Microchimica Acta, 170(1), 171–178. Scholar
  18. Fomina, M., & Gadd, G. M. (2014). Biosorption: Current perspectives on concept, definition and application. Bioresource Technology, 160, 3–14.CrossRefGoogle Scholar
  19. Gallagher, N. P., Hendrix, J. L., Milosavljevic, E. B., Nelson, J. H., & Solujic, L. (1990). Affinity of activated carbon towards some gold (I) complexes. Hydrometallurgy, 25(3), 305–316.CrossRefGoogle Scholar
  20. Ghaedi, M., Shokrollahi, A., Niknam, K., Niknam, E., Najibi, A., & Soylak, M. (2009). Cloud point extraction and flame atomic absorption spectrometric determination of cadmium (II), lead (II), palladium (II) and silver (I) in environmental samples. Journal of Hazardous Materials, 168(2–3), 1022–1027.CrossRefGoogle Scholar
  21. Giakisikli, G., & Anthemidis, A. N. (2013). Magnetic materials as sorbents for metal/metalloid preconcentration and/or separation. A review. Analytica Chimica Acta, 789, 1–16.CrossRefGoogle Scholar
  22. Gok, C. (2014). Neodymium and samarium recovery by magnetic nano-hydroxyapatite. Journal of Radioanalytical and Nuclear Chemistry, 301(3), 641–651.CrossRefGoogle Scholar
  23. Granados-Correa, F., Vilchis-Granados, J., Jiménez-Reyes, M., & Quiroz-Granados, L. A. (2012). Adsorption behaviour of La (III) and Eu (III) ions from aqueous solutions by hydroxyapatite: Kinetic, isotherm, and thermodynamic studies. Journal of Chemistry, 2013, Article ID 751696.Google Scholar
  24. Guibal, E., Von Offenberg Sweeney, N., Vincent, T., & Tobin, J. M. (2002). Sulfur derivatives of chitosan for palladium sorption. Reactive and Functional Polymers, 50(2), 149–163.CrossRefGoogle Scholar
  25. Gurung, M., Adhikari, B. B., Alam, S., Kawakita, H., Ohto, K., & Inoue, K. (2013). Persimmon tannin-based new sorption material for resource recycling and recovery of precious metals. Chemical Engineering Journal, 228, 405–414.CrossRefGoogle Scholar
  26. Gurung, M., Adhikari, B. B., Kawakita, H., Ohto, K., Inoue, K., & Alam, S. (2011). Recovery of Au (III) by using low cost adsorbent prepared from persimmon tannin extract. Chemical Engineering Journal, 174(2–3), 556–563.CrossRefGoogle Scholar
  27. Hadjittofi, L., Charalambous, S., & Pashalidis, I. (2016). Removal of trivalent samarium from aqueous solutions by activated biochar derived from cactus fibres. Journal of Rare Earths, 34(1), 99–104.CrossRefGoogle Scholar
  28. He, M., Hu, B., Zeng, Y., & Jiang, Z. (2005). ICP-MS direct determination of trace amounts of rare earth impurities in various rare earth oxides with only one standard series. Journal of Alloys and Compounds, 390(1–2), 168–174.CrossRefGoogle Scholar
  29. Homchuen, P., Alorro, R. D., Hiroyoshi, N., Sato, R., Kijitani, H., & Ito, M. (2016). A study on the utilization of magnetite for the recovery of platinum group metals from chloride solution. Mineral Processing and Extractive Metallurgy Review, 37(4), 246–254.CrossRefGoogle Scholar
  30. Hussien, Shimaa S. & Desouky, O.A. (2014). Biosorption studies on yttrium using low cost pretreated biomass of Pleurotus ostreatus. In: 4th international conference on radiation research and applied science, Taba, Egypt.Google Scholar
  31. Işıldar, A., van Hullebusch, E. D., Lenz, M., Du Laing, G., Marra, A., Cesaro, A., Panda, S., Akcil, A., Kucuker, M. A., & Kuchta, K. (2019). Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE)—a review. Journal of Hazardous Materials, 362, 467–481.CrossRefGoogle Scholar
  32. Junk, G. A., Richard, J. J., Grieser, M. D., Witiak, D., Witiak, J. L., Arguello, M. D., Vick, R., Svec, H. J., Fritz, J. S., & Calder, G. V. (1974). Use of macroreticular resins in the analysis of water for trace organic contaminants. Journal of Chromatography A, 99, 745–762.CrossRefGoogle Scholar
  33. Koochaki-Mohammadpour, S. M. A., Torab-Mostaedi, M., Talebizadeh-Rafsanjani, A., & Naderi-Behdani, F. (2014). Adsorption isotherm, kinetic, thermodynamic, and desorption studies of lanthanum and dysprosium on oxidized multiwalled carbon nanotubes. Journal of Dispersion Science and Technology, 35(2), 244–254.CrossRefGoogle Scholar
  34. Kraus, A., Jainae, K., Unob, F., & Sukpirom, N. (2009). Synthesis of MPTS-modified cobalt ferrite nanoparticles and their adsorption properties in relation to Au (III). Journal of Colloid and Interface Science, 338(2), 359–365.CrossRefGoogle Scholar
  35. Li, L., Hu, Q., Zeng, J., Qi, H., & Zhuang, G. (2011). Resistance and biosorption mechanism of silver ions by Bacillus cereus biomass. Journal of Environmental Sciences, 23(1), 108–111.CrossRefGoogle Scholar
  36. Li, P.-Z., Wang, X.-J., & Zhao, Y. (2019). Click chemistry as a versatile reaction for construction and modification of metal-organic frameworks. Coordination Chemistry Reviews, 380, 484–518.CrossRefGoogle Scholar
  37. Lingamdinne, L. P., Chang, Y.-Y., Yang, J.-K., Singh, J., Choi, E.-H., Shiratani, M., Koduru, J. R., & Attri, P. (2017a). Biogenic reductive preparation of magnetic inverse spinel iron oxide nanoparticles for the adsorption removal of heavy metals. Chemical Engineering Journal, 307, 74–84.CrossRefGoogle Scholar
  38. Lingamdinne, L. P., Choi, J.-S., Yang, J.-K., Chang, Y.-Y., Koduru, J. R., & Singh, J. (2018a). Adsorptive removal of selected anionic and cationic dyes by using graphitic carbon material prepared from edible sugar: A study of kinetics and isotherms. Acta Chimica Slovenica, 65(3), 599–610.CrossRefGoogle Scholar
  39. Lingamdinne, L. P., Choi, Y.-L., Kim, I.-S., Yang, J.-K., Koduru, J. R., & Chang, Y.-Y. (2017b). Preparation and characterization of porous reduced graphene oxide based inverse spinel nickel ferrite nanocomposite for adsorption removal of radionuclides. Journal of Hazardous Materials, 326, 145–156.CrossRefGoogle Scholar
  40. Lingamdinne, L. P., Koduru, J. R., Chang, Y.-Y., & Karri, R. R. (2018b). Process optimization and adsorption modeling of Pb (II) on nickel ferrite-reduced graphene oxide nano-composite. Journal of Molecular Liquids, 250, 202–211.CrossRefGoogle Scholar
  41. Liu, L., Liu, S., Zhang, Q., Li, C., Bao, C., Liu, X., & Xiao, P. (2012). Adsorption of Au (III), Pd (II), and Pt (IV) from aqueous solution onto graphene oxide. Journal of Chemical & Engineering Data, 58(2), 209–216.CrossRefGoogle Scholar
  42. Ma, J., Wang, Z., Shi, Y., & Li, Q. (2014). Synthesis and characterization of lysine-modified SBA-15 and its selective adsorption of scandium from a solution of rare earth elements. RSC Advances, 4(78), 41597–41604.CrossRefGoogle Scholar
  43. Mohammadi, S. Z., Karimi, M. A., Hamidian, H., Baghelani, Y. M., & Karimzadeh, L. (2011). Determination of trace amounts of Pd (II) and Rh (III) ions in Pt–Ir alloy and road dust samples by flame atomic absorption spectrometry after simultaneous separation and preconcentration on non-modified magnetic nanoparticles. Scientia Iranica, 18(6), 1636–1642.CrossRefGoogle Scholar
  44. Mohammed, L., Gomaa, H. G., Ragab, D., & Zhu, J. (2017). Magnetic nanoparticles for environmental and biomedical applications: A review. Particuology, 30, 1–14.CrossRefGoogle Scholar
  45. Mohan, D., Sarswat, A., Ok, Y. S., & Jr, C. U. P. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—A critical review. Bioresource Technology, 160, 191–202.CrossRefGoogle Scholar
  46. Mortada, W. I., Hassanien, M. M., & El-Asmy, A. A. (2014). Cloud point extraction of some precious metals using triton X-114 and a thioamide derivative with a salting-out effect. Egyptian Journal of Basic and Applied Sciences, 1(3–4), 184–191.CrossRefGoogle Scholar
  47. Mulwanda, J., & Dorfling, C. (2015). Recovery of dissolved platinum group metals from copper sulphate leach solutions by precipitation. Minerals Engineering, 80, 50–56.CrossRefGoogle Scholar
  48. Naser, A. A., El-deen, G. E. S., Bhran, A. A., Metwally, S. S., & El-Kamash, A. M. (2015). Elaboration of impregnated composite for sorption of europium and neodymium ions from aqueous solutions. Journal of Industrial and Engineering Chemistry, 32, 264–272.CrossRefGoogle Scholar
  49. Neyestani, M. R., Shemirani, F., Mozaffari, S., & Alvand, M. (2017). A magnetized graphene oxide modified with 2-mercaptobenzothiazole as a selective nanosorbent for magnetic solid phase extraction of gold (III), palladium (II) and silver (I). Microchimica Acta, 184(8), 2871–2879.CrossRefGoogle Scholar
  50. Parajuli, D., Kawakita, H., Inoue, K., & Funaoka, M. (2006). Recovery of gold(III), palladium(II), and platinum(IV) by aminated lignin derivatives. Industrial & Engineering Chemistry Research, 45(19), 6405–6412. Scholar
  51. Park, D., Yun, Y.-S., & Park, J. M. (2010a). The past, present, and future trends of biosorption. Biotechnology and Bioprocess Engineering, 15(1), 86–102.CrossRefGoogle Scholar
  52. Park, J., Won, S. W., Mao, J., Kwak, I. S., & Yun, Y.-S. (2010b). Recovery of Pd (II) from hydrochloric solution using polyallylamine hydrochloride-modified Escherichia coli biomass. Journal of Hazardous Materials, 181(1–3), 794–800.CrossRefGoogle Scholar
  53. Perez, J. P. H., Folens, K., Leus, K., Vanhaecke, F., Van Der Voort, P., & Du Laing, G. (2019). Progress in hydrometallurgical technologies to recover critical raw materials and precious metals from low-concentrated streams. Resources, Conservation and Recycling, 142, 177–188.CrossRefGoogle Scholar
  54. Płotka-Wasylka, J., Szczepańska, N., de la Guardia, M., & Namieśnik, J. (2016). Modern trends in solid phase extraction: New sorbent media. TrAC Trends in Analytical Chemistry, 77, 23–43.CrossRefGoogle Scholar
  55. Raju, B., Kumar, J. R., Lee, J.-Y., Kwonc, H.-S., Kantam, M. L., & Reddy, B. R. (2012). Separation of platinum and rhodium from chloride solutions containing aluminum, magnesium and iron using solvent extraction and precipitation methods. Journal of Hazardous Materials, 227, 142–147.CrossRefGoogle Scholar
  56. Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., & Ueda, K. (2008). Adsorption of gold (III), platinum (IV) and palladium (II) onto glycine modified crosslinked chitosan resin. Bioresource Technology, 99(9), 3801–3809.CrossRefGoogle Scholar
  57. Sarı, A., & Tüzen, M. (2013). Adsorption of silver from aqueous solution onto raw vermiculite and manganese oxide-modified vermiculite. Microporous and Mesoporous Materials, 170, 155–163.CrossRefGoogle Scholar
  58. Shu, Q., Khayambashi, A., Wang, X., & Wei, Y. (2018). Studies on adsorption of rare earth elements from nitric acid solution with macroporous silica-based bis (2-ethylhexyl) phosphoric acid impregnated polymeric adsorbent. Adsorption Science & Technology, 36(3–4), 1049–1065.CrossRefGoogle Scholar
  59. Sun, T. M., & Yen, W. T. (1993). Kinetics of gold chloride adsorption onto activated carbon. Minerals Engineering, 6(1), 17–29.CrossRefGoogle Scholar
  60. Torab-Mostaedi, M., Asadollahzadeh, M., Hemmati, A., & Khosravi, A. (2015). Biosorption of lanthanum and cerium from aqueous solutions by grapefruit peel: Equilibrium, kinetic and thermodynamic studies. Research on Chemical Intermediates, 41(2), 559–573.CrossRefGoogle Scholar
  61. Uheida, A., Iglesias, M., Fontàs, C., Hidalgo, M., Salvadó, V., Zhang, Y., & Muhammed, M. (2006). Sorption of palladium (II), rhodium (III), and platinum (IV) on Fe3O4 nanoparticles. Journal of Colloid and Interface Science, 301(2), 402–408.CrossRefGoogle Scholar
  62. Varshini C, J. S., Das, D., & Das, N. (2015). Optimization of parameters for praseodymium(III) biosorption onto biowaste materials using response surface methodology: Equilibrium, kinetic and regeneration studies. Ecological Engineering, 81, 321–327. Scholar
  63. Varshini, C. J. S., & Nilanjana, D. (2014a). Relevant approach to assess the performance of biowaste materials for the recovery of lanthanum (III) from aqueous medium. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(6), 88–94.Google Scholar
  64. Varshini, C. J. S., & Nilanjana, D. (2014b). Screening of biowaste materials for the sorption of cerium (III) from aqueous environment. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5(5), 402–408.Google Scholar
  65. Varshini, J. S. C., Das, D., & Das, N. (2015). Recovery of cerium (III) from electronic industry effluent using novel biohydrogel: Batch and column studies. Der Pharmacia Lettre, 7, 166–179.Google Scholar
  66. Vijayaraghavan, K. (2015). Biosorption of lanthanide (praseodymium) using Ulva lactuca: Mechanistic study and application of two, three, four and five parameter isotherm models. Journal of Environment & Biotechnology Research, 1(1), 10–17.Google Scholar
  67. Vijayaraghavan, K., & Jegan, J. (2015). Entrapment of brown seaweeds (Turbinaria conoides and Sargassum wightii) in polysulfone matrices for the removal of praseodymium ions from aqueous solutions. Journal of Rare Earths, 33(11), 1196–1203.CrossRefGoogle Scholar
  68. Volesky, B. (2001). Detoxification of metal-bearing effluents: Biosorption for the next century. Hydrometallurgy, 59(2–3), 203–216.CrossRefGoogle Scholar
  69. Wang, F., Zhao, J., Wei, X., Huo, F., Li, W., Hu, Q., & Liu, H. (2014). Adsorption of rare earths (III) by calcium alginate–poly glutamic acid hybrid gels. Journal of Chemical Technology & Biotechnology, 89(7), 969–977.CrossRefGoogle Scholar
  70. Wang, S., Vincent, T., Roux, J.-C., Faur, C., & Guibal, E. (2017). Pd (II) and Pt (IV) sorption using alginate and algal-based beads. Chemical Engineering Journal, 313, 567–579.CrossRefGoogle Scholar
  71. Wei, W., Cho, C.-W., Kim, S., Song, M.-H., Bediako, J. K., & Yun, Y.-S. (2016). Selective recovery of Au (III), Pt (IV), and Pd (II) from aqueous solutions by liquid–liquid extraction using ionic liquid Aliquat-336. Journal of Molecular Liquids, 216, 18–24.CrossRefGoogle Scholar
  72. Won, S. W., Kim, S., Kotte, P., Lim, A., & Yun, Y.-S. (2013). Cationic polymer-immobilized polysulfone-based fibers as high performance sorbents for Pt (IV) recovery from acidic solutions. Journal of Hazardous Materials, 263, 391–397.CrossRefGoogle Scholar
  73. Won, S. W., Kotte, P., Wei, W., Lim, A., & Yun, Y.-S. (2014). Biosorbents for recovery of precious metals. Bioresource Technology, 160, 203–212.CrossRefGoogle Scholar
  74. Xiong, Y., Adhikari, C. R., Kawakita, H., Ohto, K., Inoue, K., & Harada, H. (2009). Selective recovery of precious metals by persimmon waste chemically modified with dimethylamine. Bioresource Technology, 100(18), 4083–4089.CrossRefGoogle Scholar
  75. Yang, L., Jia, F., & Song, S. (2017). Recovery of [Au (CN) 2]− from gold cyanidation with graphene oxide as adsorbent. Separation and Purification Technology, 186, 63–69.CrossRefGoogle Scholar
  76. Yao, T., Xiao, Y., Wu, X., Guo, C., Zhao, Y., & Chen, X. (2016). Adsorption of Eu (III) on sulfonated graphene oxide: Combined macroscopic and modeling techniques. Journal of Molecular Liquids, 215, 443–448.CrossRefGoogle Scholar
  77. Yoshimura, A., Takai, M., & Matsuno, Y. (2014). Novel process for recycling gold from secondary sources: Leaching of gold by dimethyl sulfoxide solutions containing copper bromide and precipitation with water. Hydrometallurgy, 149, 177–182.CrossRefGoogle Scholar
  78. Yu, H., Zi, F., Hu, X., Nie, Y., Chen, Y., & Cheng, H. (2018). Adsorption of gold from thiosulfate solutions with chemically modified activated carbon. Adsorption Science & Technology, 36(1–2), 408–428.CrossRefGoogle Scholar
  79. Zhao, F., Repo, E., Meng, Y., Wang, X., Yin, D., & Sillanpää, M. (2016). An EDTA-β-cyclodextrin material for the adsorption of rare earth elements and its application in preconcentration of rare earth elements in seawater. Journal of Colloid and Interface Science, 465, 215–224.CrossRefGoogle Scholar
  80. Zheng, X., Wang, C., Dai, J., Shi, W., & Yan, Y. (2015). Design of mesoporous silica hybrid materials as sorbents for the selective recovery of rare earth metals. Journal of Materials Chemistry A, 3(19), 10327–10335.CrossRefGoogle Scholar
  81. Zhu, Y., Zheng, Y., & Wang, A. (2015). Preparation of granular hydrogel composite by the redox couple for efficient and fast adsorption of La (III) and Ce (III). Journal of Environmental Chemical Engineering, 3(2), 1416–1425.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Janardhan Reddy Koduru
    • 1
  • Lakshmi Prasanna Lingamdinne
    • 1
  • Suresh Kumar Kailasa
    • 2
  • Thriveni Thenepalli
    • 3
  • Yoon-Young Chang
    • 1
  • Jae-Kyu Yang
    • 1
  1. 1.Department of Environmental EngineeringKwangwoon UniversitySeoulRepublic of Korea
  2. 2.Department of Applied ChemistryS. V. National Institute of TechnologySuratIndia
  3. 3.Mineral Resources Division, Center for Carbon MineralizationKorea Institute of Geosciences and Mineral Resources (KIGAM)DaejeonSouth Korea

Personalised recommendations