Mineral Processing of Rare Earth Ores

  • Surya Kanta Das
  • Shivakumar I. AngadiEmail author
  • Tonmoy Kundu
  • Suddhasatwa Basu


Demand for rare earth metals is increasing day by day in various high-tech applications such as super magnets, fluid cracking catalysts, nickel-metal-hydride (NiMH) batteries, and ordinance industries as well as in some defense applications. The rare earth metals are extracted from different REE-bearing minerals that occur in carbonatites, pegmatites, and placer deposits. About 95% of the world’s rare earth production comes from bastnaesite, monazite, and xenotime minerals. In many instances, rare earth minerals are found in association with various gangue minerals. The recovery of rare earth values from the lean-grade ores requires several stages of mineral beneficiation and hydrometallurgical unit operations. The mineral beneficiation techniques such as gravity concentration, magnetic separation, electrostatic separation, and flotation were employed for the recovery of rare earth minerals. The present chapter highlights the world distribution of rare earth deposits, occurrences, processing methodologies, and plant practices of few economic minerals.


Rare earth minerals Bastnaesite Monazite Xenotime Beneficiation Gravity concentration Magnetic separation Flotation Chemical processing Plant practices 


  1. Abaka-Wood, G.B., Addai-Mensah, J., & Skinner, W. (2016). Review of flotation and physical separation of rare earth element minerals. 4th UMaT Biennial International Mining and Mineral Conference. Tarkwa Ghana, MR 55–62.Google Scholar
  2. Abaka-Wood, G. B., Quast, K., Zanin, M., Addai-Mensah, J., & Skinner, W. (2018). A study of the feasibility of upgrading rare earth elements minerals from iron-oxide-silicate rich tailings using Knelson concentrator and Wilfley shaking table. Powder Technology, 344, 897–913.CrossRefGoogle Scholar
  3. Abeidu, A. M. (1972). The separation of monazite from zircon by flotation. Journal of the Less Common Metals, 29, 113–119.CrossRefGoogle Scholar
  4. Andrews, W. H., Collins, D. N., & Hollick, C. T. (1990). The flotation of rare earths—a contribution to industrial hygiene. Carlton, VIC: Australasian Institute of Mining and Metallurgy.Google Scholar
  5. Beloglazov, K. F., & Osolodkov, G. A. (1936). Effect of the alkalinity of the pulp in flotation of apatite. Representative of the Leningrad Ministry Institute, 1, 26–30.Google Scholar
  6. Bulatovic, S. M. (2007). Handbook of flotation reagents. Amsterdam: Elsevier. Scholar
  7. Castor, S. B. (2008). The Mountain Pass rare-earth carbonatite and associated ultrapotassic rocks, California. The Canadian Mineralogist, 46, 779–806.CrossRefGoogle Scholar
  8. Chan, T. N. (1992). A new beneficiation process for the treatment of supergene monazite ore. In Rare earths: Extraction, preparation and applications (pp. 77–94). San Diego, CA: TMS and AusIMM.Google Scholar
  9. Chelgani, S. C., Rudolph, M., Leistner, T., Gutzmer, J., & Peuker, U. A. (2015). A review of rare earth minerals flotation: Monazite and xenotime. International Journal of Mining Science and Technology, 25, 877–883.CrossRefGoogle Scholar
  10. Cheng, Ta-Wui. (1993). Surface properties and flotation behaviour of monazite and xenotime. PhD thesis, The University of New South Wales.Google Scholar
  11. Cheng, T.-W., Holtham, P. N., & Tran, T. (1993). Froth flotation of monazite and xenotime. Minerals Engineering, 6, 341–351. Scholar
  12. Cheng, T.-W., Partridge, A. C., Tran, T., & Wong, P. L. M. (1994). The surface properties and flotation behaviour of xenotime. Minerals Engineering, 7, 1085–1098.CrossRefGoogle Scholar
  13. Chi R, Xu S, Zhu G, Xu J, Qiu X. (2001). Light metals 2001: Proceedings of the technical sessions presented by the TMS Aluminium Committee at the 130th TMS annual meeting, 1159–1165, New Orleans, Louisanna, February 2000. Warrendale, PA: Minerals, Metals and Materials Society.Google Scholar
  14. Cui, H., & Anderson, C. G. (2017). Alternative flowsheet for rare earth beneficiation of Bear Lodge ore. Minerals Engineering, 110, 166–178.CrossRefGoogle Scholar
  15. Dixit, S. G., & Biswas A. K. (1969). Minerals beneficiation – pH-dependence of the flotation and adsorption properties of some beach sand minerals. Trans AIME, 244(3), 173.Google Scholar
  16. Falconer, A. (2003). Gravity separation: Old technique/new methods. Physical Separation in Science and Engineering, 12, 31–48.CrossRefGoogle Scholar
  17. Ferron, C. J., Bulatovic, S. M., & Salter, R. S. (1991). Beneficiation of rare earth oxide minerals. Materials Science Forum, 70–72, 251–270.CrossRefGoogle Scholar
  18. Generalic, E. (2019). Rare Earth Elements (REE). EniG. Periodic table of the elements. Retrieved from
  19. Gupta, C. K., & Krishnamurthy, N. (1992). Extractive metallurgy of rare earths. International Materials Reviews, 37, 197–248.CrossRefGoogle Scholar
  20. Gupta, C. K., & Krishnamurthy, N. (2005). Extractive metallurgy of rare earths. Boca Raton, FL: CRC Press.Google Scholar
  21. Harada, T., Owada, S., Takiuchiand, T., & Kurita, M. (1993). A flotation study for effective separation of the heavy mineral sands. In XVIII international mineral processing congress (pp. 1017). New York.Google Scholar
  22. Hedrick, J. B., Sinha, S. P., & Kosynkin, V. D. (1997). Loparite, a rare-earth ore (Ce, Na, Sr, Ca)(Ti, Nb, Ta, Fe+3)O3. Journal of Alloys and Compounds, 250, 467–470.CrossRefGoogle Scholar
  23. Houot, R., Cuif, J. P., Mottot, Y., & Samama, J. C. (1991). Recovery of rare earth minerals, with emphasis on flotation process. Materials Science Forum, 70–72, 301–324.CrossRefGoogle Scholar
  24. Jordens, A., Cheng, Y. P., & Waters, K. E. (2013). A review of the beneficiation of rare earth element bearing minerals. Minerals Engineering, 41, 97–114. Scholar
  25. Jordens, A., Sheridan, R. S., Rowson, N. A., Waters, K. E. (2014). Processing a rare earth mineral deposit using gravity and magnetic separation. Minerals Engineering, 62, 9–18.
  26. Jordens, A., Marion, C., Langlois, R., Grammatikopoulos, T., Rowson, N. A., & Waters, K. E. (2016). Beneficiation of the Nechalacho rare earth deposit. Part 1: Gravity and magnetic separation. Minerals Engineering, 99, 111–122.CrossRefGoogle Scholar
  27. Jun, R., Wenmei, W., Jiake, L., Gaoyun, Z., & Fangqiong, T. (2003). Progress of flotation reagents of rare earth minerals in China. Journal of Rare Earths, 21(1), 1–8.Google Scholar
  28. Kanazawa, Y., & Kamitani, M. (2006). Rare earth minerals and resources in the world. Journal of Alloys and Compounds, 408–412, 1339–1343.CrossRefGoogle Scholar
  29. Li, L. Z. & Yang, X. (2014). China’s rare earth ore deposits and beneficiation techniques. 1st European Rare Earth Resources Conference ERES2014. pp. 26–36.Google Scholar
  30. Li, L. Z., & Yang, X. (2016). China’s Rare Earth Resources, Mineralogy, and Beneficiation. In Rare earths industry (pp. 139–150). Amsterdam: Elsevier.CrossRefGoogle Scholar
  31. Long, K., Gosen, B.S., Foley, N., & Cordier, D. 2010. The principal rare earth elements deposits of the United States. USGS Scientific Investigations Report: 2010–5220. Mineral Commodity Summaries.Google Scholar
  32. Moustafa, M. I., & Abdelfattah, N. A. (2010). Physical and chemical beneficiation of the Egyptian beach monazite: Beneficiation of monazite. Resource Geology, 60, 288–299.CrossRefGoogle Scholar
  33. Murthy, T. K. S., & Mukherjee, T. K. (2001). Processing of rare earth resources, rare earth metals, non-ferrous metals strategy cum source book. New Delhi: TIFAC.Google Scholar
  34. Ozeren, M.S. & Hutchinson H. 1990. The selective flotation of xenotime from heavy minerals. The AUSIMM annual conference. Rotorua New Zealand.Google Scholar
  35. Pavez, O., Brandao, P. R. G., & Peres, A. E. C. (1996). Adsorption of oleate and octyl-hydroxamate on to rare-earths minerals. Minerals Engineering, 9, 357–366.CrossRefGoogle Scholar
  36. Pavez, O., & Peres, A. E. C. (1993). Effect of sodium metasilicate and sodium sulphide on the floatability of monazite-zircon-rutile with oleate and hydroxamates. Minerals Engineering, 6, 69–78.CrossRefGoogle Scholar
  37. Pavez, O., & Peres, A. E. C. (1994). Technical note bench scale flotation of a Brazilian monazite ore. Minerals Engineering, 7, 1561–1564.CrossRefGoogle Scholar
  38. Pereira, C. A., & Peres, A. E. C. (1997). Flotation concentration of a xenotime pre-concentrate. Minerals Engineering, 10, 1291–1295.CrossRefGoogle Scholar
  39. Pradip, K. (1981). The surface properties and flotation of rare-earths minerals. Ann Arbor, MI: University Microfilms International.Google Scholar
  40. Pradip, K., & Fuerstenau, D. W. (1983). The adsorption of hydroxamate on semi-soluble minerals. Part I: Adsorption on barite, Calcite and Bastnaesite. Colloids and Surfaces, 8, 103–119. Scholar
  41. Pradip, K., & Fuerstenau, D. W. (1991). The role of inorganic and organic reagents in the flotation separation of rare-earth ores. International Journal of Mineral Processing, 32, 1–22.CrossRefGoogle Scholar
  42. Pradip, K., & Fuerstenau, D. W. (2013). Design and development of novel flotation reagents for the beneficiation of Mountain Pass rare-earth ore. Mining, Metallurgy & Exploration, 30, 1–9.CrossRefGoogle Scholar
  43. Qi, D. (2018). Hydrometallurgy of rare earths: extraction and separation. Cambridge, MA: Elsevier.Google Scholar
  44. Rao, S. R. (2004). Surface chemistry of froth flotation. Kluwer Academic, New York, USA.
  45. Ren, J., Lu, S., Song, S., & Niu, J. (1997). A new collector for rare earth mineral flotation. Minerals Engineering, 10, 1395–1404.CrossRefGoogle Scholar
  46. Ren, J., Song, S., Lopez-Valdivieso, A., & Lu, S. (2000). Selective flotation of bastnaesite from monazite in rare earth concentrates using potassium alum as depressant. International Journal of Mineral Processing, 59, 237–245.CrossRefGoogle Scholar
  47. Ren, J., Wang, W. M., Luo, J. K., Zhou, G. Y., & Tang, F. Q. (2003). Progress of flotation reagents of rare earth minerals in China. Journal of Rare Earths, 21, 1–8.Google Scholar
  48. Richter, L., Diamond, L.W., Atanasova, P., Banks, D.A., & Gutzmer, J. (2018). Hydrothermal formation of heavy rare earth element (HREE) – xenotime deposits at 100 °C in a sedimentary basin. Geology, 26(3). 263–266. ISSN 0091-7613
  49. Smith, R. W., & Shonnard, D. (1986). Electrokinetic study of the role of modifying agents in flotation of salt-type minerals. AICHE Journal, 32, 865–868.CrossRefGoogle Scholar
  50. Sorensen, E. & Lundgaard, T.. (1966). Selective flotation of steenstrupine and monazite from Kvanefjeld Lujavrite—Report for the Danish Atomic Energy Commission. Roskilde.Google Scholar
  51. Spedding, F. H. (1975). Contributions of the rare earths to science and technology. Symposium on the effects of rare earths on the properties of metals and alloys. ASM, Cincinnati, Ohio, United States of America, 1–11.Google Scholar
  52. Taikang, D., & Yingnan, H. (1980) Studies on high grade rare earth flotation technology. Multipurpose Utilization of Mineral Resources, 1, 27–33 (in Chinese)Google Scholar
  53. U.S. Geological Survey. (2017). Mineral commodity summaries 2017: U.S. Geological Survey, 202 p.
  54. Xiong, W., Deng, J., Chen, B., Deng, S., & Wei, D. (2018). Flotation-magnetic separation for the beneficiation of rare earth ores. Minerals Engineering, 119, 49–56.CrossRefGoogle Scholar
  55. Yang, X. J., Lin, A., Li, X.-L., Wu, Y., Zhou, W., & Chen, Z. (2013). China’s ion-adsorption rare earth resources, mining consequences and preservation. Environmental Development, 8, 131–136.CrossRefGoogle Scholar
  56. Zhang, J., & Edwards, C. (2012). A review on rare earth mineral processing technology. In 44th Annual Meeting of the Canadian Mineral Processing (pp. 79–102). Ottawa: CIM.Google Scholar
  57. Zhang, W., & Honaker, R. (2017). Surface charge of rare earth phosphate (monazite) in aqueous solutions. Powder Technology, 318, 263 – 271.

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Surya Kanta Das
    • 1
  • Shivakumar I. Angadi
    • 1
    Email author
  • Tonmoy Kundu
    • 1
  • Suddhasatwa Basu
    • 1
  1. 1.CSIR-Institute of Minerals and Materials TechnologyBhubaneswarIndia

Personalised recommendations