Fluorescent Lymphangiography: Sentinel Node Navigation Surgery in Melanoma

  • Rene Aleman
  • Fernando Dip
  • Emanuele Lo Menzo
  • Raul J. RosenthalEmail author


Sentinel lymph node biopsy (SLNB) and overall sentinel node navigational surgery (SNNS) of melanoma lymphatics is considered standard of care for the staging of regional lymph nodes (LN) in patients with melanoma according to the American Joint Committee of Cancer (AJCC). Currently, both radiolabeled colloids and blue dye are used for the localization of said nodularity, and its combination gives optimal accuracy. However, several drawbacks of these techniques exist. In fact, the blue dye often requires significant dissection in order to be accurately visualized. The radiolabeled colloid injection is more cumbersome and requires significant clinical coordination. Additionally, it exposes patient and care givers to small, but cumulative, doses of radiation. An alternative tracer has been recently introduced to clinical practice, indocyanine green (ICG). This agent is nontoxic, does not stain the tissues, and thanks to its property of becoming fluorescent in the near infrared light spectrum, can be easily visualized by using special filtered light. Herein, we present the applicability and implications of fluorescence-guided surgery of sentinel lymph node (SLN) in patients with melanoma.


Indocyanine green (ICG) Probes Fluorescence- guided surgery Perfusion Sentinel lymph node Mapping Melanoma 

Supplementary material

Video 32.1

Fluorescence-guided sentinel lymph node excision (MP4 18590 kb)


  1. 1.
    USCS Data visualizations. Available at: Accessed: 12 Mar 2019.
  2. 2.
    Morton DL. Technical details of intraoperative lymphatic mapping for early stage melanoma. Arch Surg. 1992;127:392.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Messina JL, et al. Selective lymphadenectomy in patients with Merkel cell (cutaneous neuroendocrine) carcinoma. Ann Surg Oncol. 1997;4:389–95.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Kitai T, Inomoto T, Miwa M, Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12:211–5.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Kusano M, Kokudo N, Toi M, Kaibori M. ICG fluorescence imaging and navigation surgery. Berlin: Springer; 2016.CrossRefGoogle Scholar
  6. 6.
    Balch CM, et al. Prognostic factors analysis of 17,600 melanoma patients: validation of the American Joint Committee on Cancer melanoma staging system. J Clin Oncol. 2001;19:3622–34.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Geller AC, et al. Melanoma incidence and mortality among US whites, 1969–1999. JAMA. 2002;288:1719–20.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Gershenwald JE, et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J Clin. 2017;67:472–92.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Morton DL, et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N Engl J Med. 2014;370:599–609.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Coit D. Sentinel lymph node biopsy for melanoma: a plea to let the data speak. Ann Surg Oncol. 2014;21:3359–61.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gershenwald JE, et al. Multi-institutional melanoma lymphatic mapping experience: the prognostic value of sentinel lymph node status in 612 stage I or II melanoma patients. J Clin Oncol. 1999;17:976.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Troyan SL, et al. The flare™ intraoperative near-infrared fluorescence imaging system: a first-in-human clinical trial in breast cancer sentinel lymph node mapping. Ann Surg Oncol. 2009;16:2943–52.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Fujiwara M, Mizukami T, Suzuki A, Fukamizu H. Sentinel lymph node detection in skin cancer patients using real-time fluorescence navigation with indocyanine green: preliminary experience. J Plast Reconstr Aesthet Surg. 2009;62:e373–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Themelis G, Yoo JS, Ntziachristos V. Multispectral imaging using multiple-bandpass filters. Opt Lett. 2008;33:1023.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Keereweer S, et al. Optical image-guided surgery—where do we stand? Mol Imaging Biol. 2011;13:199–207.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lo MCI, et al. A feasibility study of indocyanine green fluorescence mapping for sentinel lymph node detection in cutaneous melanoma. J Plast Reconstr Aesthet Surg. 2019;72:137–71.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Knackstedt RW, Couto RA, Gastman B. Indocyanine green fluorescence imaging with lymphoscintigraphy for sentinel node biopsy in head and neck melanoma. J Surg Res. 2018;228:77–83.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Vahabzadeh-Hagh AM, Blackwell KE, Abemayor E, St John MA. Sentinel lymph node biopsy in cutaneous melanoma of the head and neck using the indocyanine green SPY Elite system. Am J Otolaryngol. 2018;39:485–8.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    McGregor A, Pavri SN, Tsay C, Kim S, Narayan D. Use of indocyanine green for sentinel lymph node biopsy: case series and methods comparison. Plast Reconstr Surg Glob Open. 2017;5:e1566.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    KleinJan GH, et al. Introducing navigation during melanoma-related sentinel lymph node procedures in the head-and-neck region. EJNMMI Res. 2017;7:65.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Göppner D, et al. Indocyanine green-assisted sentinel lymph node biopsy in melanoma using the ‘FOVIS’ system. J Dtsch Dermatol Ges. 2017;15:169–78.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Mondal SB, et al. Binocular Goggle Augmented Imaging and Navigation System provides real-time fluorescence image guidance for tumor resection and sentinel lymph node mapping. Sci Rep. 2015;5:12117.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Stoffels I, Leyh J, Pöppel T, Schadendorf D, Klode J. Evaluation of a radioactive and fluorescent hybrid tracer for sentinel lymph node biopsy in head and neck malignancies: prospective randomized clinical trial to compare ICG-(99m)Tc-nanocolloid hybrid tracer versus (99m)Tc-nanocolloid. Eur J Nucl Med Mol Imaging. 2015;42:1631–8.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Stoffels I, Dissemond J, Pöppel T, Schadendorf D, Klode J. Intraoperative fluorescence imaging for sentinel lymph node detection: prospective clinical trial to compare the usefulness of Indocyanine green vs technetium Tc 99m for identification of sentinel lymph nodes. JAMA Surg. 2015;150:617–23.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    van den Berg NS, et al. Multimodal surgical guidance during sentinel node biopsy for melanoma: combined gamma tracing and fluorescence imaging of the sentinel node through use of the hybrid tracer indocyanine green-(99m)Tc-nanocolloid. Radiology. 2015;275:521–9.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Cloyd JM, Wapnir IL, Read BM, Swetter S, Greco RS. Indocyanine green and fluorescence lymphangiography for sentinel lymph node identification in cutaneous melanoma. J Surg Oncol. 2014;110:888–92.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Korn JM, Tellez-Diaz A, Bartz-Kurycki M, Gastman B. Indocyanine green SPY elite-assisted sentinel lymph node biopsy in cutaneous melanoma. Plast Reconstr Surg. 2014;133:914–22.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jain V, Phillips BT, Conkling N, Pameijer C. Sentinel lymph node detection using laser-assisted indocyanine green dye lymphangiography in patients with melanoma. Int J Surg Oncol. 2013;2013:904214.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Murawa D, Polom K, Murawa P. One-year postoperative morbidity associated with near-infrared-guided indocyanine green (ICG) or ICG in conjugation with human serum albumin (ICG:HSA) sentinel lymph node biopsy. Surg Innov. 2014;21:240–3.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Gilmore DM, et al. Effective low-dose escalation of indocyanine green for near-infrared fluorescent sentinel lymph node mapping in melanoma. Ann Surg Oncol. 2013;20:2357–63.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Namikawa K, Tsutsumida A, Tanaka R, Kato J, Yamazaki N. Limitation of indocyanine green fluorescence in identifying sentinel lymph node prior to skin incision in cutaneous melanoma. Int J Clin Oncol. 2014;19:198–203.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    van der Vorst JR, et al. Dose optimization for near-infrared fluorescence sentinel lymph node mapping in patients with melanoma. Br J Dermatol. 2013;168:93–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Brouwer OR, et al. Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med. 2012;53:1034–40.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Fujisawa Y, Nakamura Y, Kawachi Y, Otsuka F. Indocyanine green fluorescence-navigated sentinel node biopsy showed higher sensitivity than the radioisotope or blue dye method, which may help to reduce false-negative cases in skin cancer. J Surg Oncol. 2012;106:41–5.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Brouwer OR, et al. Feasibility of sentinel node biopsy in head and neck melanoma using a hybrid radioactive and fluorescent tracer. Ann Surg Oncol. 2012;19:1988–94.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Stoffels I, et al. Indocyanine green fluorescence-guided sentinel lymph node biopsy in dermato-oncology. J Dtsch Dermatol Ges. 2012;10:51–7.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Uhara H, et al. Applicability of radiocolloids, blue dyes and fluorescent indocyanine green to sentinel node biopsy in melanoma. J Dermatol. 2012;39:336–8.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Polom K, Murawa D, Rho YS, Spychala A, Murawa P. Skin melanoma sentinel lymph node biopsy using real-time fluorescence navigation with indocyanine green and indocyanine green with human serum albumin. Br J Dermatol. 2012;166:682–3.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Fujisawa Y, Nakamura Y, Kawachi Y, Otsuka F. A custom-made, low-cost intraoperative fluorescence navigation system with indocyanine green for sentinel lymph node biopsy in skin cancer. Dermatology. 2011;222:261–8.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hayashi T, et al. Sentinel lymph node biopsy using real-time fluorescence navigation with indocyanine green in cutaneous head and neck/lip mucosa melanomas. Head Neck. 2012;34:758–61.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Niebling MG, et al. A systematic review and meta-analyses of sentinel lymph node identification in breast cancer and melanoma, a plea for tracer mapping. Eur J Surg Oncol. 2016;42:466–73.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Papathemelis T, et al. Sentinel lymph node biopsy in breast cancer patients by means of indocyanine green using the Karl Storz VITOM® fluorescence camera. Biomed Res Int. 2018;2018:1–8.CrossRefGoogle Scholar
  43. 43.
    lidplussdesign. IC-flow™ imaging system—diagnostic green Germany. Diagnostic Green Germany. Available at: Accessed: 14 Mar 2019.
  44. 44.
    Sondak VK, Khushalani NI. Adjuvant and neoadjuvant therapy in high-risk stage III cutaneous melanoma. Int J Radiat Oncol Biol Phys. 2017;98:16–7.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Pleijhuis RG, et al. Obtaining adequate surgical margins in breast-conserving therapy for patients with early-stage breast cancer: current modalities and future directions. Ann Surg Oncol. 2009;16:2717–30.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ntziachristos V. Fluorescence molecular imaging. Annu Rev Biomed Eng. 2006;8:1–33.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Murawa D, Hirche C, Dresel S, Hünerbein M. Sentinel lymph node biopsy in breast cancer guided by indocyanine green fluorescence. Br J Surg. 2009;96:1289–94.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kang T, et al. Does blue dye contribute to success of sentinel node mapping for breast cancer? Ann Surg Oncol. 2010;17:280–5.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Bagaria SP, Faries MB, Morton DL. Sentinel node biopsy in melanoma: technical considerations of the procedure as performed at the John Wayne Cancer Institute. J Surg Oncol. 2010;101:669–76.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Derossis AM, et al. A trend analysis of the relative value of blue dye and isotope localization in 2,000 consecutive cases of sentinel node biopsy for breast cancer 1 1No competing interests declared. J Am Coll Surg. 2001;193:473–8.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    King TA, et al. A prospective analysis of the effect of blue-dye volume on sentinel lymph node mapping success and incidence of allergic reaction in patients with breast cancer. Ann Surg Oncol. 2004;11:535–41.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Rughani MG, et al. Sentinel lymph node biopsy in melanoma: The Oxford ten year clinical experience. J Plast Reconstr Aesthet Surg. 2011;64:1284–90.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Rene Aleman
    • 1
  • Fernando Dip
    • 2
  • Emanuele Lo Menzo
    • 3
  • Raul J. Rosenthal
    • 3
    Email author
  1. 1.Bariatric and Metabolic Institute, Cleveland Clinic FloridaWestonUSA
  2. 2.Hospital de Clinicas Jose de San MartinBuenos AiresArgentina
  3. 3.Department of General SurgeryThe Bariatric and Metabolic Institute, Cleveland Clinic FloridaWestonUSA

Personalised recommendations