Advertisement

Ureter Identification Using Near-Infrared Fluorescence Imaging

  • M. Al-TaherEmail author
  • J. van den Bos
  • B. Knapen
  • N. D. Bouvy
  • L. P. S. Stassen
Chapter
  • 6 Downloads

Abstract

Ureteric injury is a feared complication during laparoscopic surgery. However, the majority of iatrogenic ureteral injuries are not recognized during the surgical procedure, which may lead to worse postoperative outcomes.

Intraoperative fluorescence ureteral identification with preoperative optical dye administration is a new technique for easier and earlier intraoperative visualization of the ureter. Therefore, it could improve the safety and efficiency of laparoscopic procedures.

In this chapter, we describe the technique and outline the dyes that have been studied to improve intraoperative recognition of the ureters during laparoscopic surgery. In the video, we demonstrate the use of three pre-clinical dyes for ureteral identification in a real-life pig model.

While several dyes in this chapter and in the video show promising results, the findings should be regarded as preliminary, indicating possible application in clinical settings. Current and future studies are necessary to validate the applicability of the technique.

Keywords

Fluorescence imaging Ureteral visualization Fluorescent dyes Laparoscopic surgery Near-infrared 

Supplementary material

Video 22.1

Demonstration of successful ureter identification using near-infrared fluorescence imaging in a real-life pig model (MP4 521015 kb)

References

  1. 1.
    da Silva G, Boutros M, Wexner SD. Role of prophylactic ureteric stents in colorectal surgery. Asian J Endosc Surg. 2012;5(3):105–10.CrossRefGoogle Scholar
  2. 2.
    Abboudi H, Ahmed K, Royle J, Khan MS, Dasgupta P, N’Dow J. Ureteric injury: a challenging condition to diagnose and manage. Nat Rev Urol. 2013;10(2):108–15.CrossRefGoogle Scholar
  3. 3.
    Esparaz AM, Pearl JA, Herts BR, LeBlanc J, Kapoor B. Iatrogenic urinary tract injuries: etiology, diagnosis, and management. Semin Intervent Radiol. 2015;32(2):195–208.CrossRefGoogle Scholar
  4. 4.
    Delacroix SE Jr, Winters JC. Urinary tract injuries: recognition and management. Clin Colon Rectal Surg. 2010;23(3):221.CrossRefGoogle Scholar
  5. 5.
    Park JH, Park JW, Song K, Jo MK. Ureteral injury in gynecologic surgery: a 5-year review in a community hospital. Korean J Urol. 2012;53(2):120–5.CrossRefGoogle Scholar
  6. 6.
    Palaniappa NC, Telem DA, Ranasinghe NE, Divino CM. Incidence of iatrogenic ureteral injury after laparoscopic colectomy. Arch Surg. 2012;147(3):267–71.CrossRefGoogle Scholar
  7. 7.
    Assimos DG, Patterson LC, Taylor CL. Changing incidence and etiology of iatrogenic ureteral injuries. J Urol. 1994;152(6 Pt 2):2240–6.CrossRefGoogle Scholar
  8. 8.
    Zhang X, Wang Z, Zhou H, Liang J, Zhou Z. Analysis of ureteral injuries for laparoscopic rectal cancer surgery. J Laparoendosc Adv Surg Tech A. 2014;24(10):698–701.CrossRefGoogle Scholar
  9. 9.
    Brandes S, Coburn M, Armenakas N, McAninch J. Diagnosis and management of ureteric injury: an evidence-based analysis. BJU Int. 2004;94(3):277–89.CrossRefGoogle Scholar
  10. 10.
    Delacroix SE Jr, Winters JC. Urinary tract injures: recognition and management. Clin Colon Rectal Surg. 2010;23(2):104–12.CrossRefGoogle Scholar
  11. 11.
    Speicher PJ, Goldsmith ZG, Nussbaum DP, Turley RS, Peterson AC, Mantyh CR. Ureteral stenting in laparoscopic colorectal surgery. J Surg Res. 2014;190(1):98–103.CrossRefGoogle Scholar
  12. 12.
    Beraldo S, Neubeck K, Von Friderici E, Steinmuller L. The prophylactic use of a ureteral stent in laparoscopic colorectal surgery. Scand J Surg. 2013;102(2):87–9.CrossRefGoogle Scholar
  13. 13.
    Matsui A, Tanaka E, Choi HS, Kianzad V, Gioux S, Lomnes SJ, et al. Real-time, near-infrared, fluorescence-guided identification of the ureters using methylene blue. Surgery. 2010;148(1):78–86.CrossRefGoogle Scholar
  14. 14.
    Tanaka E, Ohnishi S, Laurence RG, Choi HS, Humblet V, Frangioni JV. Real-time intraoperative ureteral guidance using invisible near-infrared fluorescence. J Urol. 2007;178(5):2197–202.CrossRefGoogle Scholar
  15. 15.
    Schols RM, Lodewick TM, Bouvy ND, van Dam GM, Dejong CH, Stassen LP. Application of a new dye for near-infrared fluorescence laparoscopy of the ureters: demonstration in a pig model. Dis Colon Rectum. 2014;57(3):407–11.CrossRefGoogle Scholar
  16. 16.
    Korb ML, Huh WK, Boone JD, Warram JM, Chung TK, de Boer E, et al. Laparoscopic fluorescent visualization of the ureter with intravenous IRDye800CW. J Minim Invasive Gynecol. 2015;22(5):799–806.CrossRefGoogle Scholar
  17. 17.
    Verbeek FP, van der Vorst JR, Schaafsma BE, Swijnenburg RJ, Gaarenstroom KN, Elzevier HW, et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience. J Urol. 2013;190(2):574–9.CrossRefGoogle Scholar
  18. 18.
    Al-Taher M, van den Bos J, Schols RM, Bouvy ND, Stassen LP. Fluorescence ureteral visualization in human laparoscopic colorectal surgery using methylene blue. J Laparoendosc Adv Surg Tech A. 2016;26(11):870–5.CrossRefGoogle Scholar
  19. 19.
    Barnes TG, Hompes R, Birks J, Mortensen NJ, Jones O, Lindsey I, et al. Methylene blue fluorescence of the ureter during colorectal surgery. Surg Endosc. 2018;32(9):4036–43.CrossRefGoogle Scholar
  20. 20.
    Friedman-Levi Y, Larush L, Diana M, Marchegiani F, Marescaux J, Goder N, et al. Optimization of liposomal indocyanine green for imaging of the urinary pathways and a proof of concept in a pig model. Surg Endosc. 2018;32(2):963–70.CrossRefGoogle Scholar
  21. 21.
    Verbeek FP, van der Vorst JR, Tummers QR, Boonstra MC, de Rooij KE, Lowik CW, et al. Near-infrared fluorescence imaging of both colorectal cancer and ureters using a low-dose integrin targeted probe. Ann Surg Oncol. 2014;21(Suppl 4):S528–37.CrossRefGoogle Scholar
  22. 22.
    de Valk KS, Handgraaf HJ, Deken MM, Sibinga Mulder BG, Valentijn AR, Terwisscha van Scheltinga AG, et al. A zwitterionic near-infrared fluorophore for real-time ureter identification during laparoscopic abdominopelvic surgery. Nat Commun. 2019;10(1):3118.CrossRefGoogle Scholar
  23. 23.
    Dip FD, Nahmod M, Anzorena FS, Moreira A, Sarotto L, Ampudia C, et al. Novel technique for identification of ureters using sodium fluorescein. Surg Endosc. 2014;28(9):2730–3.CrossRefGoogle Scholar
  24. 24.
    Mahalingam SM, Dip F, Castillo M, Roy M, Wexner SD, Rosenthal RJ, et al. Intraoperative ureter visualization using a novel near-infrared fluorescent dye. Mol Pharm. 2018;15(8):3442–7.CrossRefGoogle Scholar
  25. 25.
    van den Bos J, Al-Taher M, Bouvy ND, Stassen LPS. Near-infrared fluorescence laparoscopy of the ureter with three preclinical dyes in a pig model. Surg Endosc. 2019;33(3):986–91.CrossRefGoogle Scholar
  26. 26.
    van den Bos J, Al-Taher M, Hsien SG, Bouvy ND, Stassen LPS. Near-infrared fluorescence laparoscopy of the cystic duct and cystic artery: first experience with two new preclinical dyes in a pig model. Surg Endosc. 2017;31(10):4309–14.CrossRefGoogle Scholar
  27. 27.
    Al-Taher M, van den Bos J, Schols RM, Kubat B, Bouvy ND, Stassen LPS. Evaluation of a novel dye for near-infrared fluorescence delineation of the ureters during laparoscopy. BJS Open. 2018;2(4):254–61.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • M. Al-Taher
    • 1
    Email author
  • J. van den Bos
    • 1
  • B. Knapen
    • 1
  • N. D. Bouvy
    • 1
  • L. P. S. Stassen
    • 1
  1. 1.Department of SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands

Personalised recommendations