Identification of Liver Metastasis

  • Tomotake KoizumiEmail author
  • Takeshi Aoki
  • Masahiko Murakami


Tumor-targeted fluorescence imaging has the potential to advance the present practice of oncological surgery by selectively highlighting malignant tissues intraoperatively. Near-infrared (NIR) fluorescence is a promising and novel intraoperative imaging technique that can be applied during liver surgery to identify liver metastases (LM) from various cancers. In addition, indocyanine green (ICG)–based fluorescence imaging for LM is safe and simple; it involves the intravenous injection of ICG, followed by the observation of the liver by NIR fluorescence imaging during surgery. LM can be detected by the emitted fluorescence signal from ICG, which commonly accumulates in the surrounding noncancerous liver tissues that have been compressed by the tumor. This technique provides the particular capacity to identify lesions after chemotherapy and new lesions that are undetectable by conventional diagnostic images. Moreover, by not exposing the fluorescence signal in the tumor lesion, the use of the NIR fluorescence images for guidance helps secure the surgical margins, particularly during laparoscopic hepatectomy and parenchymal-sparing hepatectomy. However, the drawbacks of this technology include a relatively high false-positive rate and the difficulty in visualizing deeply located tumors from the liver surface. With the further development of new tracers by the conjugation of fluorophores to the antibody that targets a specific cancer and the improvement of imaging devices, this technique is expected to be indispensable for the diagnosis and treatment of patients with LM.


Liver metastasis Near-infrared fluorescence Indocyanine green Tumor detection Newly detected lesion Surgical margin False-positive lesion 

Supplementary material

Video 16.1

Laparoscopic partial hepatectomy with near-infrared fluorescence imaging for detection of tumor and determination of surgical margin (M4V 91031 kb)


  1. 1.
    Guyer DR, Puliafito CA, Monés JM, Friedman E, Chang W, Verdooner SR. Digital indocyanine-green angiography in chorioretinal disorders. Ophthalmology. 1992;99:287–91.CrossRefGoogle Scholar
  2. 2.
    Ogata F, Azuma R, Kikuchi M, Koshima I, Morimoto Y. Novel lymphography using indocyanine green dye for near-infrared fluorescence labeling. Ann Plast Surg. 2007;58:652–5.CrossRefGoogle Scholar
  3. 3.
    Kitai T, Inomoto T, Miwa M, Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12:211–5.CrossRefGoogle Scholar
  4. 4.
    Kusano M, Tajima Y, Yamazaki K, Kato M, Watanabe M, Miwa M. Sentinel node mapping guided by indocyanine green fluorescence imaging: a new method for sentinel node navigation surgery in gastrointestinal cancer. Dig Surg. 2008;25:103–8. Scholar
  5. 5.
    Rubens FD, Ruel M, Fremes SE. A new and simplified method for coronary and graft imaging during CABG. Heart Surg Forum. 2002;5:141–4.PubMedGoogle Scholar
  6. 6.
    Raabe A, Nakaji P, Beck J, Kim LJ, Hsu FP, Kamerman JD, et al. Prospective evaluation of surgical microscope-integrated intraoperative near-infrared indocyanine green videoangiography during aneurysm surgery. J Neurosurg. 2005;103:982–9.CrossRefGoogle Scholar
  7. 7.
    Kubota K, Kita J, Shimoda M, Rokkaku K, Kato M, Iso Y, et al. Intraoperative assessment of reconstructed vessels in living-donor liver transplantation, using a novel fluorescence imaging technique. J Hepato-Biliary-Pancreat Surg. 2006;13:100–4.CrossRefGoogle Scholar
  8. 8.
    Mitsuhashi N, Kimura F, Shimizu H, Imamaki M, Yoshidome H, Ohtsuka M, et al. Usefulness of intraoperative fluorescence imaging to evaluate local anatomy in hepatobiliary surgery. J Hepato-Biliary-Pancreat Surg. 2008;15:508–14.–007–1307–5.CrossRefGoogle Scholar
  9. 9.
    Aoki T, Yasuda D, Shimizu Y, Odaira M, Niiya T, Kusano T, et al. Image-guided liver mapping using fluorescence navigation system with indocyanine green for anatomical hepatic resection. World J Surg. 2008;32:1763–7.–008–9620-y.CrossRefPubMedGoogle Scholar
  10. 10.
    Ishizawa T, Tamura S, Masuda K, Aoki T, Hasegawa K, Imamura H, et al. Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg. 2009;208:e1–4. Scholar
  11. 11.
    Ishizawa T, Fukushima N, Shibahara J, Masuda K, Tamura S, Aoki T, et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115:2491–504. Scholar
  12. 12.
    Ishizawa T, Masuda K, Urano Y, Kawaguchi Y, Satou S, Kaneko J, et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann Surg Oncol. 2014;21:440–8.–013–3360–4.CrossRefPubMedGoogle Scholar
  13. 13.
    van der Vorst JR, Schaafsma BE, Hutteman M, Verbeek FP, Liefers GJ, Hartgrink HH, et al. Near-infrared fluorescence-guided resection of colorectal liver metastases. Cancer. 2013;119:3411–8. Scholar
  14. 14.
    Kudo H, Ishizawa T, Tani K, Harada N, Ichida A, Shimizu A, et al. Visualization of subcapsular hepatic malignancy by indocyanine-green fluorescence imaging during laparoscopic hepatectomy. Surg Endosc. 2014;28:2504–8.–014–3468-z.CrossRefPubMedGoogle Scholar
  15. 15.
    Xu F, Tang B, Jin TQ, Dai CL. Current status of surgical treatment of colorectal liver metastases. World J Clin Cases. 2018;26(6):716–34. Scholar
  16. 16.
    Sahani DV, Kalva SP, Tanabe KK, Hayat SM, O’Neill MJ, Halpern EF, et al. Intraoperative US in patients undergoing surgery for liver neoplasms: compar- ison with MR imaging. Radiology. 2004;232:810–4.CrossRefGoogle Scholar
  17. 17.
    Zhang K, Kokudo N, Hasegawa K, Arita J, Tang W, Aoki T, et al. Detection of new tumors by intraoperative ultrasonography during repeated hepatic resections for hepatocellular carcinoma. Arch Surg. 2007;142:1170–5.CrossRefGoogle Scholar
  18. 18.
    Machi J, Isomoto H, Kurohiji T, Yamashita Y, Shirouzu K, Kakegawa T, et al. Accuracy of intraoperative ultrasonography in diagnosing liver metastasis from colorectal cancer: evaluation with postoperative follow-up results. World J Surg. 1991;15:551–6.CrossRefGoogle Scholar
  19. 19.
    Nomura K, Kadoya M, Ueda K, Fujinaga Y, Miwa S, Miyagawa S. Detection of hepatic metastases from colorectal carcinoma: comparison of histopathologic features of anatomically resected liver with results of preoperative imaging. J Clin Gastroenterol. 2007;41:789–95.CrossRefGoogle Scholar
  20. 20.
    Aoki T, Murakami M, Koizumi T, Matsuda K, Fujimori A, Kusano T, et al. Determination of the surgical margin in laparoscopic liver resections using infrared indocyanine green fluorescence. Langenbeck's Arch Surg. 2018;403:671–80.–018–1685-y.CrossRefGoogle Scholar
  21. 21.
    DSouza AV, Lin H, Henderson ER, Samkoe KS, Pogue BW. Review of fluorescence guided surgery systems: identification of key performance capabilities beyond indocyanine green imaging. J Biomed Opt. 2016;21:80901. Scholar
  22. 22.
    Abo T, Nanashima A, Tobinaga S, Hidaka S, Taura N, Takagi K, et al. Usefulness of intraoperative diagnosis of hepatic tumors located at the liver surface and hepatic segmental visualization using indocyanine green-photodynamic eye imaging. Eur J Surg Oncol. 2015;41:257–64. Scholar
  23. 23.
    Lieto E, Galizia G, Cardella F, Mabilia A, Basile N, Castellano P, et al. Indocyanine green fluorescence imaging-guided surgery in primary and metastatic liver tumors. Surg Innov. 2018;25(1):62–8. Scholar
  24. 24.
    Alfano MS, Molfino S, Benedicenti S, Molteni B, Porsio P, Arici E, et al. Intraoperative ICG-based imaging of liver neoplasms: a simple yet powerful tool. Preliminary results. Surg Endosc. 2019;33(1):126–34.–018–6282–1.CrossRefPubMedGoogle Scholar
  25. 25.
    Uchiyama K, Ueno M, Ozawa S, Kiriyama S, Shigekawa Y, Yamaue H. Combined use of contrast-enhanced intraoperative ultrasonography and a fluorescence navigation system for identifying hepatic metastases. World J Surg. 2010;34:2953–9.–010–0764–1.CrossRefPubMedGoogle Scholar
  26. 26.
    Ishizuka M, Kubota K, Kita J, Shimoda M, Kato M, Sawada T. Intraoperative observation using a fluorescence imaging instrument during hepatic resection for liver metastasis from colorectal cancer. Hepato-Gastroenterology. 2012;59:90–2. Scholar
  27. 27.
    Peloso A, Franchi E, Canepa MC, Barbieri L, Briani L, Ferrario J, et al. Combined use of intraoperative ultrasound and indocyanine green fluorescence imaging to detect liver metastases from colorectal cancer. HPB (Oxford). 2013;15:928–34. Scholar
  28. 28.
    Shimada S, Ohtsubo S, Ogasawara K, Kusano M. Macro- and microscopic findings of ICG fluorescence in liver tumors. World J Surg Oncol. 2015;13:198.–015–0615–5.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Kawaguchi Y, Nagai M, Nomura Y, Kokudo N, Tanaka N. Usefulness of indocyanine green-fluorescence imaging during laparoscopic hepatectomy to visualize subcapsular hard-to-identify hepatic malignancy. J Surg Oncol. 2015;112:514–6. Scholar
  30. 30.
    Kaibori M, Matsui K, Ishizaki M, Iida H, Okumura T, Sakaguchi T, et al. Intraoperative detection of superficial liver tumors by fluorescence imaging using indocyanine green and 5-aminolevulinic acid. Anticancer Res. 2016;36:1841–9.PubMedGoogle Scholar
  31. 31.
    Takahashi H, Zaidi N, Berber E. An initial report on the intraoperative use of indocyanine green fluorescence imaging in the surgical management of liver tumorss. J Surg Oncol. 2016;114:625–9. Scholar
  32. 32.
    Boogerd LS, Handgraaf HJ, Lam HD, Huurman VA, Farina-Sarasqueta A, Frangioni JV, et al. Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance. Surg Endosc. 2017;31:952–61.–016–5007–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Yokoyama N, Otani T, Hashidate H, Maeda C, Katada T, Sudo N, et al. Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging: preliminary results of a prospective study. Cancer. 2012;118:2813–9. Scholar
  34. 34.
    Zhang YM, Shi R, Hou JC, Liu ZR, Cui ZL, Li Y, et al. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. J Cancer Res Clin Oncol. 2017;143:51–8.–016–2267–4.CrossRefPubMedGoogle Scholar
  35. 35.
    Tummers QR, Verbeek FP, Prevoo HA, Braat AE, Baeten CI, Frangioni JV, et al. First experience on laparoscopic near-infrared fluorescence imaging of hepatic uveal melanoma metastases using indocyanine green. Surg Innov. 2015;22:20–5. Scholar
  36. 36.
    Benedicenti S, Molfino S, Alfano MS, Molteni B, Porsio P, Portolani N, et al. Indocyanine-green fluorescence-GUIDED liver resection of metastasis from squamous cell carcinoma invading the biliary tree. Case Rep Gastrointest Med. 2018;2018:5849816. Scholar
  37. 37.
    Terasawa M, Ishizawa T, Mise Y, Inoue Y, Ito H, Takahashi Y, et al. Applications of fusion-fluorescence imaging using indocyanine green in laparoscopic hepatectomy. Surg Endosc. 2017;31:5111–8.–017–5576-z.CrossRefPubMedGoogle Scholar
  38. 38.
    Handgraaf HJM, Boogerd LSF, Höppener DJ, Peloso A, Sibinga Mulder BG, Hoogstins CES, et al. Long-term follow-up after near-infrared fluorescence-guided resection of colorectal liver metastases: a retrospective multicenter analysis. Eur J Surg Oncol. 2017;43:1463–71. Scholar
  39. 39.
    Moris D, Ronnekleiv-Kelly S, Rahnemai-Azar AA, Felekouras E, Dillhoff M, Schmidt C, et al. Parenchymal-sparing versus anatomic liver resection for colorectal liver metastases: a systematic review. J Gastrointest Surg. 2017;21:1076–85.–017–3397-y.CrossRefPubMedGoogle Scholar
  40. 40.
    Hoogstins CE, Tummers QR, Gaarenstroom KN, de Kroon CD, Trimbos JB, Bosse T, et al. A novel tumor-specific agent for intraoperative near-infrared fluorescence imaging: a translational study in healthy volunteers and patients with ovarian cancer. Clin Cancer Res. 2016;22:2929–38.–0432.CCR-15–2640.CrossRefPubMedGoogle Scholar
  41. 41.
    Rosenthal EL, Warram JM, de Boer E, Chung TK, Korb ML, Brandwein-Gensler M, et al. Safety and tumor specificity of Cetuximab-IRDye800 for surgical navigation in head and neck cancer. Clin Cancer Res. 2015;21:3658–66.–0432.CCR-14–3284.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Lamberts LE, Koch M, de Jong JS, Adams ALL, Glatz J, Kranendonk MEG, et al. Tumor-specific uptake of fluorescent bevacizumab-IRDye800CW microdosing in patients with primary breast cancer: a phase I feasibility study. Clin Cancer Res. 2017;23:2730–41.–0432.CCR-16–0437.CrossRefPubMedGoogle Scholar
  43. 43.
    Boogerd LSF, Hoogstins CES, Schaap DP, Kusters M, Handgraaf HJM, van der Valk MJM, et al. Safety and effectiveness of SGM-101, a fluorescent antibody targeting carcinoembryonic antigen, for intraoperative detection of colorectal cancer: a dose-escalation pilot study. Lancet Gastroenterol Hepatol. 2018;3:181–91.–1253(17)30395–3.CrossRefPubMedGoogle Scholar
  44. 44.
    Hoogstins CES, Boogerd LSF, Sibinga Mulder BG, Mieog JSD, Swijnenburg RJ, van de Velde CJH, et al. Image-guided surgery in patients with pancreatic cancer: first results of a clinical trial using SGM-101, a novel carcinoembryonic antigen-targeting, near-infrared fluorescent agent. Ann Surg Oncol. 2018;25:3350–7.–018–6655–7.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Tomotake Koizumi
    • 1
    Email author
  • Takeshi Aoki
    • 1
  • Masahiko Murakami
    • 1
  1. 1.Division of Gastroenterological and General Surgery, Department of SurgeryShowa UniversityTokyoJapan

Personalised recommendations