Vascular Perfusion in Small Bowel Anastomosis

  • Shiksha Joshi
  • Emanuele Lo Menzo
  • Fernando Dip
  • Samuel Szomstein
  • Raul J. RosenthalEmail author


The perfusion of the resected ends of the bowel is of vital importance for the proper healing of an anastomosis. However, the perfusion assessment of the anastomotic ends is often imprecise and subjective. The assessment of perfusion of the bowel is also paramount in cases of emergent operations for ischemia. In these cases, the extent of resection is dependent on the accurate assessment of vitality of the intestine left behind. When doubts exist, second-look laparotomies are necessary to ensure that all the bowels left behind remain viable. Therefore, any modality that can provide an objective assessment of perfusion at the bowel ends can reduce the risk of postoperative anastomosis dehiscence and strictures.

Although modalities like color of the serosal surface, presence of bowel peristalsis, pulsation and bleeding from the marginal arteries, and Doppler have been studied in the past, their accuracy remains variable and somewhat subjective. More recently, fluorescent imaging with indocyanine green (ICG) has shown to objectively identify the potentially ischemic bowel tissue, thereby reducing the rates of failure of anastomosis. Quantitative assessment of the fluorescent perfusion is currently being developed as well.


Vascular perfusion Indocyanine green Bowel anastomosis Fluorescent angiography Bowel incarceration Bowel ischemia 

Supplementary material

Video 11.1

Observation and evaluation of perfusion of the bowel with ICG angiography to establish viability (MOV 168040 kb)


  1. 1.
    Kudszus S, Roesel C, Schachtrupp A, Höer JJ. Intraoperative laser fluorescence angiography in colorectal surgery: a noninvasive analysis to reduce the rate of anastomotic leakage. Langenbeck’s Arch Surg. 2010;395:1025–30.CrossRefGoogle Scholar
  2. 2.
    McKinsey JF, Gewertz BL. Acute mesenteric ischemia. Surg Clin N Am. 1997;77:307–18.CrossRefGoogle Scholar
  3. 3.
    Urbanavičius L, Pattyn P, Van de Putte D, Venskutonis D. How to assess intestinal viability during surgery: a review of techniques. World J Gastrointest Surg. 2011;3:59–69.CrossRefGoogle Scholar
  4. 4.
    Daskalopoulou D, Kankam J, Plambeck J, Ambe PC, Zarras K. Intraoperative real-time fluorescence angiography with indocyanine green for evaluation of intestinal viability during surgery for an incarcerated obturator hernia: a case report. Patient Saf Surg. 2018;12:24.CrossRefGoogle Scholar
  5. 5.
    Ryu S, Yoshida M, Ohdaira H, Tsutsui N, Suzuki N, Ito E, Nakajima K, Yanagisawa S, Kitajima M, Suzuki Y. Intestinal blood flow assessment by indocyanine green fluorescence imaging in a patient with the incarcerated umbilical hernia: report of a case. Ann Med Surg (Lond). 2016;8:40–2.CrossRefGoogle Scholar
  6. 6.
    Nakagawa Y, Kobayashi K, Kuwabara S, Shibuya H, Nishimaki T. Use of indocyanine green fluorescence imaging to determine the area of bowel resection in non-occlusive mesenteric ischemia: a case report. Int J Surg Case Rep. 2018;51:352–7.CrossRefGoogle Scholar
  7. 7.
    Irie T, Matsutani T, Hagiwara N, Nomura T, Fujita I, Kanazawa Y, Kakinuma D, Uchida E. Successful treatment of non-occlusive mesenteric ischemia with indocyanine green fluorescence and open-abdomen management. Clin J Gastroenterol. 2017;10:514–8.CrossRefGoogle Scholar
  8. 8.
    Nitori N, Deguchi T, Kubota K, et al. Successful treatment of non-occlusive mesenteric ischemia (NOMI) using the HyperEye Medical System™ for intraoperative visualization of the mesenteric and bowel circulation: report of a case. Surg Today. 2014;44:359–62.CrossRefGoogle Scholar
  9. 9.
    Iinuma Y, Hirayama Y, Yokoyama N, Otani T, Nitta K, Hashidate H, Yoshida M, Iida H, Masui D, Manabe S. Intraoperative near-infrared indocyanine green fluorescence angiography (NIR-ICG AG) can predict delayed small bowel stricture after ischemic intestinal injury: report of a case. J Pediatr Surg. 2013;48:1123–8.CrossRefGoogle Scholar
  10. 10.
    Keller DS, Ishizawa T, Cohen R, Chand M. Indocyanine green fluorescence imaging in colorectal surgery: overview, applications, and future directions. Lancet Gastroenterol Hepatol. 2017;2:757–66.CrossRefGoogle Scholar
  11. 11.
    Boni L, David G, Dionigi G, Rausei S, Cassinotti E, Fingerhut A. Indocyanine green-enhanced fluorescence to assess bowel perfusion during laparoscopic colorectal resection. Surg Endosc. 2016;30:2736–42.CrossRefGoogle Scholar
  12. 12.
    Menzo EL, Lo Menzo E, Dip FD, Szomstein S, Rosenthal RJ. Economic impact of fluorescent cholangiography. In: Fluorescence imaging for surgeons. UK: Springer; 2015. p. 99–106.Google Scholar
  13. 13.
    Bornstein JE, Munger JA, Deliz JR, Mui A, Chen CS, Kim S, Khaitov S, Chessin DB, Ferguson TB, Bauer JJ. Assessment of bowel end perfusion after mesenteric division: eye versus SPY. J Surg Res. 2018;232:179–85.CrossRefGoogle Scholar
  14. 14.
    Treskes N, Persoon AM, van Zanten ARH.Diagnostic accuracy of novel serological biomarkers to detect acute mesenteric ischemia: a systematic review and meta-analysis. Intern Emerg Med. 2017;12:821–36.CrossRefGoogle Scholar
  15. 15.
    Matsui A, Winer JH, Laurence RG, Frangioni JV. Predicting the survival of experimental ischaemic small bowel using intraoperative near-infrared fluorescence angiography. Br J Surg. 2011;98:1725–34.CrossRefGoogle Scholar
  16. 16.
    Karampinis I, Keese M, Jakob J, Stasiunaitis V, Gerken A, Attenberger U, Post S, Kienle P, Nowak K. Indocyanine green tissue angiography can reduce extended bowel resections in acute mesenteric ischemia. J Gastrointest Surg. 2018;22:2117–24.CrossRefGoogle Scholar
  17. 17.
    Diana M, Agnus V, Halvax P, Liu YY, Dallemagne B, Schlagowski AI, Geny B, Diemunsch P, Lindner V, Marescaux J. Intraoperative fluorescence-based enhanced reality laparoscopic real-time imaging to assess bowel perfusion at the anastomotic site in an experimental model. Br J Surg. 2015;102:e169–76.CrossRefGoogle Scholar
  18. 18.
    Diana M, Noll E, Diemunsch P, et al. Enhanced-reality video fluorescence: a real-time assessment of intestinal viability. Ann Surg. 2014;259:700–7.CrossRefGoogle Scholar
  19. 19.
    Diana M, Halvax P, Dallemagne B, et al. Real-time navigation by fluorescence-based enhanced reality for precise estimation of future anastomotic site in digestive surgery. Surg Endosc. 2014;28:3108–18.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Shiksha Joshi
    • 1
  • Emanuele Lo Menzo
    • 2
  • Fernando Dip
    • 3
  • Samuel Szomstein
    • 1
  • Raul J. Rosenthal
    • 4
    Email author
  1. 1.Department of General Surgery, The Bariatric and Metabolic Institute, Cleveland Clinic FloridaWestonUSA
  2. 2.Department of General SurgeryThe Bariatric and Metabolic Institute, Cleveland Clinic FloridaWestonUSA
  3. 3.Hospital de Clinicas Jose de San MartinBuenos AiresArgentina
  4. 4.Department of General SurgeryThe Bariatric and Metabolic Institute, Cleveland Clinic FloridaWestonUSA

Personalised recommendations