Advertisement

Exploring Active Camber for Path Following and Yaw Stability of Autonomous Vehicles

  • Wenliang ZhangEmail author
  • Lars Drugge
  • Mikael Nybacka
  • Zhenpo Wang
Conference paper
  • 13 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

This paper explores active camber for path following and yaw stability control of over-actuated autonomous electric vehicles (AEVs). The camber effect on tyre force is modelled with a modified Dugoff tyre model, where the influence of tyre slip on camber stiffness is considered. Additionally, a nonlinear vehicle model including the longitudinal, lateral and yaw motion of the vehicle and the rotational motion of the wheels is utilised. The control problem of the AEVs is formulated with model predictive control, where both actuator- and safety-related constraints are considered. Comparative studies show that with four-wheel camber control the path following and yaw stability performance of the AEV can be considerably improved.

Keywords

Active camber Model predictive control Yaw stability Over actuation Autonomous vehicle 

Nomenclature and Notation

\(\mathcal {A}\)

A set in which the elements denote the front left, front right, rear left and rear right wheels, respectively, \(=\{fl,fr,rl,rr\}\).

\(v_{x}, v_{y}; \omega _{z}\)

Longitudinal, lateral velocity; yaw rate (\(\mathrm {m/s}; \mathrm {rad/s}\)).

\(X, Y; \psi \)

Longitudinal, lateral position; yaw angle (\(\mathrm {m}; \mathrm {rad}\)).

\(a_{x}, a_{y}\)

Longitudinal, lateral acceleration (\(\mathrm {m/s^{2}}\)).

\(\delta _{f}; \gamma _{f}, \gamma _{r}\)

Front steering angle; front, rear camber angle (\(\mathrm {rad}\)).

\(T_{i}\)

Drive/braking torque at the wheel (\(\mathrm {N}\cdot \mathrm {m}\)) (\(i \in \mathcal {A}\)).

\(F_{xi}, F_{yi}, F_{zi}\)

Longitudinal, lateral, vertical tyre force (\(\mathrm {N}\)) (\(i \in \mathcal {A}\)).

\(\alpha _{i}, \kappa _{i}; \omega _{i}\)

Tyre slip angle, slip ratio; angular velocity (\(\mathrm {rad}, -; \mathrm {rad/s}\)) (\(i \in \mathcal {A}\)).

\(C_{\gamma i}, C_{\alpha i}; C_{\kappa i}\)

Tyre camber, cornering; longitudinal stiffness (\(\mathrm {N/rad}; \mathrm {N}\)) (\(i \in \mathcal {A}\)).

\(I_{wi}; r_{e}\)

Tyre rotational inertia; radius (\(\mathrm {kg \cdot m^{2}}; \mathrm {m}\)) (\(i \in \mathcal {A}\)).

\(h_{g}; \mu \)

Height of centre of gravity (CoG); road friction coefficient (\(\mathrm {m}; -\)).

\(m; I_{z}\)

Vehicle mass; yaw inertia (\(\mathrm {kg}; \mathrm {kg \cdot m^{2}}\)).

\(l_{f}, l_{r}; B_{f}, B_{r}\)

Distance from CoG to front, rear axle; front, rear track width (\(\mathrm {m}\)).

Notes

Acknowledgment

The authors would like to gratefully acknowledge the support from the Swedish Electromobility Centre, the National Key R&D Programme of China under Grant 2017YFB0103600 and the TRENoP (Transport Research Environment with Novel Perspectives) at KTH Royal Institute of Technology.

References

  1. 1.
    Hori, Y.: Future vehicle driven by electricity and control-research on four-wheel-motored “UOT electric march II”. IEEE Trans. Industr. Electron. 51(5), 954–962 (2004)CrossRefGoogle Scholar
  2. 2.
    Pacejka, H.: Tire and Vehicle Dynamics, 3rd edn. Elsevier, Oxford (2012)Google Scholar
  3. 3.
    Sun, P., Trigell, A.S., Drugge, L., Jerrelind, J., Jonasson, M.: Exploring the potential of camber control to improve vehicles’ energy efficiency during cornering. Energies 11(4), 724 (2018)CrossRefGoogle Scholar
  4. 4.
    Braghin, F., Prada, A., Sabbioni, E.: Potentialities of active suspensions for the improvement of handling performances. In: ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASME (2010)Google Scholar
  5. 5.
    Roethof, D., Sezer, T., Arat, M.A., Shyrokau, B.: Influence of active camber control on steering feel. SAE Int. J. Passeng. Cars Mech. Syst. 9(1), 124–134 (2016)CrossRefGoogle Scholar
  6. 6.
    Jerrelind, J., Edrén, J., Li, S., Davari, M.M., Drugge, L., Stensson Trigell, A.: Exploring active camber to enhance vehicle performance and safety. In: IAVSD 2013 (2013)Google Scholar
  7. 7.
    Gáspár, P., Németh, B.: Integrated control design for driver assistance systems based on LPV methods. Int. J. Control 89(12), 2420–2433 (2016)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Yoshino, T., Nozaki, H.: Effect of direct yaw moment control based on steering angle velocity and camber angle control. In: SAE Technical Paper Series. SAE International (2014)Google Scholar
  9. 9.
    Rajamani, R.: Vehicle Dynamics and Control, 2nd edn. Springer, New York (2012)CrossRefGoogle Scholar
  10. 10.
    Falcone, P., Borrelli, F., Asgari, J., Tseng, H.E., Hrovat, D.: Predictive active steering control for autonomous vehicle systems. IEEE Trans. Control Syst. Technol. 15(3), 566–580 (2007)CrossRefGoogle Scholar
  11. 11.
    Dugoff, H., Fancher, P.S., Segel, L.: Tyre performance charecteristics affecting vehicle response to steering and braking control inputs. Technical report, Contract CST-460, U.S. National Bureau of Standards, Washington, DC (1969)Google Scholar
  12. 12.
    Liu, W., He, H., Sun, F.: Vehicle state estimation based on minimum model error criterion combining with extended Kalman filter. J. Franklin Inst. 353(4), 834–856 (2016)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Tsang, T.H., Himmelblau, D.M., Edgar, T.F.: Optimal control via collocation and non-linear programming. Int. J. Control 21(5), 763–768 (1975)CrossRefGoogle Scholar
  14. 14.
    Passenger cars – Test track for a severe lane-change manoeuvre – Part 1: Double lane-change, ISO Standard 3888-1:1999 (1999)Google Scholar
  15. 15.
    Rawlings, J.B., Mayne, D.Q., Diehl, M.M.: Model Predictive Control: Theory, Computation, and Design, 2nd edn. Nob Hill Publishing, Madison (2017)Google Scholar
  16. 16.
    Risbeck, M.J., Rawlings, J.B.: MPCTools: nonlinear model predictive control tools for CasADi (Python interface) (2015). https://bitbucket.org/rawlings-group/mpc-tools-casadi
  17. 17.
    Andersson, J.A.E., Gillis, J., Horn, G., Rawlings, J.B., Diehl, M.: CasADi - a software framework for nonlinear optimization and optimal control. Math. Program. Comput. 11, 1–33 (2019) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Wächter, A., Biegler, L.T.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2005)MathSciNetCrossRefGoogle Scholar
  19. 19.
    HSL: a collection of Fortran codes for large scale scientific computation (2014). http://www.hsl.rl.ac.uk/
  20. 20.
    Wallmark, O., Nybacka, M., Malmquist, D., Burman, M., Wennhage, P., Georen, P.: Design and implementation of an experimental research and concept demonstration vehicle. In: 2014 IEEE Vehicle Power and Propulsion Conference, pp. 1–6 (2014)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Wenliang Zhang
    • 1
    • 2
    Email author
  • Lars Drugge
    • 1
  • Mikael Nybacka
    • 1
  • Zhenpo Wang
    • 2
  1. 1.Department of Aeronautical and Vehicle EngineeringKTH Royal Institute of TechnologyStockholmSweden
  2. 2.School of Mechanical EngineeringBeijing Institute of TechnologyBeijingChina

Personalised recommendations