Advertisement

Real-Time Capable Nonlinear Model Predictive Wheel Slip Control for Combined Driving and Cornering

  • Mathias MetzlerEmail author
  • Alessandro Scamarcio
  • Patrick Gruber
  • Aldo Sorniotti
Conference paper
  • 5 Downloads
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

This paper presents a traction controller for combined driving and cornering conditions, based on explicit nonlinear model predictive control. The prediction model includes a nonlinear tire force model using a simplified version of the Pacejka Magic Formula, incorporating the effect of combined longitudinal and lateral slips. Simulations of a front-wheel-drive electric vehicle with multiple motors highlight the benefits of the proposed formulation with respect to a controller with a tire model for pure longitudinal slip. Objective performance indicators provide a performance assessment in traction control scenarios.

Keywords

Model predictive control Traction control Combined slip Cornering response Explicit solution 

References

  1. 1.
    Aligia, D.A., Magallan, G.A., De Angelo, C.H.: EV traction control based on nonlinear observers considering longitudinal and lateral tire forces. IEEE Trans. Intell. Transp. Syst. 19(8), 2558–2571 (2018)CrossRefGoogle Scholar
  2. 2.
    Park, J.H., Kim, C.Y.: Wheel slip control in traction control system for vehicle stability. Veh. Syst. Dyn. 31(4), 263–278 (1999)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Borrelli, F., Bemporad, A., Fodor, M., Hrovat, D.: An MPC/hybrid system approach to traction control. IEEE Trans. Control Syst. Technol. 14(3), 541–552 (2006)CrossRefGoogle Scholar
  4. 4.
    Satzger, C., de Castro, R.: Combined wheel-slip and torque blending using MPC. In: 2014 International Conference on Connected Vehicles and Expo (ICCVE), pp. 618–624. IEEE, Vienna (2014)Google Scholar
  5. 5.
    Tavernini, D., Metzler, M., Gruber, P., Sorniotti, A.: Explicit nonlinear model predictive control for electric vehicle traction control. IEEE Trans. Control Syst. Technol. 27(4), 1438–1451 (2019)CrossRefGoogle Scholar
  6. 6.
    Bächle, T., Graichen, K., Buchholz, M., Dietmayer, K.: Slip-constrained model predictive control allocation for an all-wheel driven electric vehicle. IFAC Proc. Vol. 47(3), 12042–12047 (2014). 19th IFAC World CongressGoogle Scholar
  7. 7.
    Metzler, M., Tavernini, D., Sorniotti, A., Gruber, P.: Explicit nonlinear model predictive control for vehicle stability control. In: 9th International Munich Chassis Symposium 2018, pp. 733–752. Springer Vieweg, Wiesbaden (2018)Google Scholar
  8. 8.
    Giangiulio, E., Arosio, D.: New validated tire model to be used for ABS and VDC simulations. In: 3rd International Colloquium on Vehicle-Tire-Road Interaction, pp. 1–17 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.University of SurreySurreyUK

Personalised recommendations