A Free-Trajectory Quasi-steady-state Optimal-Control Method for Minimum-Time Problems of Cars and Motorcycles

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Minimum-lap-time problems are commonly solved employing quasi-steady-state models on a predetermined trajectory or dynamic models on a free (non-predetermined) trajectory. The current work deals with a third approach, that combines a free-trajectory minimum-lap-time method, together with a quasi-steady-state description of the vehicle. The method is based on the computation of the well known g-g diagrams, which summarise the quasi-steady-state performance of the vehicle. This information is employed for the solution of an optimal-control problem, that allows to determine the optimal trajectory. Numerical models of high complexity can be employed, since all their features (e.g. tyre limits, power limits, aerodynamic drag and downforce, suspensions, etc.) are included in the related g-g diagrams, and do not affect the complexity of the optimal control problem that need be solved. The method allows to employ even experimental g-g diagrams in place of numerical ones, and is suitable for application to both cars and motorcycles.


  1. 1.
    Metz, D., Williams, D.: Near time-optimal control of racing vehicles. Automatica 25(6), 841–857 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Gadola, M., Vetturi, D., Cambiaghi, D., Manzo, L.: A tool for lap time simulation. Technical report 1996-12-01, SAE Technical Paper (1996)Google Scholar
  3. 3.
    Siegler, B., Deakin, A., Crolla, D.: Lap time simulation: comparison of steady state, quasi-static and transient racing car cornering stategies. In: Society of Automobile Engineers (ed.) 2000 SAE Motorsports Engineering Conference and Exposition, No. paper 2000-01-3563, p. 9. SAE International (2000) Google Scholar
  4. 4.
    Brayshaw, D., Harrison, M.: A quasi steady state approach to race car lap simulation in order to understand the effects of racing line and centre of gravity location. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 219(6), 725–739 (2005)CrossRefGoogle Scholar
  5. 5.
    Brayshaw, D., Harrison, M.: Use of numerical optimization to determine the effect of the roll stiffness distribution on race car performance. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 219(10), 1141–1151 (2005)CrossRefGoogle Scholar
  6. 6.
    Savaresi, S.M., Spelta, C., Ciotti, D., Sofia, M., Rosignoli, E., Bina, E.: Virtual selection of the optimal gear-set in a race car. Int. J. Veh. Syst. Model. Test. 3(1–2), 47–67 (2008)Google Scholar
  7. 7.
    Kelly, D.P., Sharp, R.S.: Time-optimal control of the race car: influence of a thermodynamic tyre model. Veh. Syst. Dyn. 50(4), 641–662 (2012)CrossRefGoogle Scholar
  8. 8.
    Völkl, T., Muehlmeier, M., Winner, H.: Extended steady state lap time simulation for analyzing transient vehicle behavior. SAE Int. J. Passeng. Cars Mech. Syst. 6, 283–292 (2013)CrossRefGoogle Scholar
  9. 9.
    Tremlett, A., Assadian, F., Purdy, D., Vaughan, N., Moore, A., Halley, M.: Quasi-steady-state linearisation of the racing vehicle acceleration envelope: a limited slip differential example. Veh. Syst. Dyn. 52(11), 1416–1442 (2014)CrossRefGoogle Scholar
  10. 10.
    Hendrikx, J., Meijlink, T., Kriens, R.: Application of optimal control theory to inverse simulation of car handling. Veh. Syst. Dyn. 26(6), 449–461 (1996)CrossRefGoogle Scholar
  11. 11.
    Cossalter, V., Da Lio, M., Lot, R., Fabbri, L.: A general method for the evaluation of vehicle manoeuvrability with special emphasis on motorcycles. Veh. Syst. Dyn. 31(2), 113–135 (1999)CrossRefGoogle Scholar
  12. 12.
    Casanova, D., Sharp, R.S., Symonds, P.: Minimum time manoeuvring: the significance of yaw inertia. Veh. Syst. Dyn. 34(2), 77–115 (2000)CrossRefGoogle Scholar
  13. 13.
    Casanova, D.: On minimum time vehicle manoeuvring: the theoretical optimal lap. Ph.D. thesis, School of Engineering, Cranfield University (2000)Google Scholar
  14. 14.
    Bertolazzi, E., Biral, F., Da Lio, M.: Symbolic-numeric efficient solution of optimal control problems for multibody systems. J. Comput. Appl. Math. 185(2), 404–421 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Kelly, D.P.: Lap time simulation with transient vehicle and tyre dynamics. Ph.D. thesis, Cranfield University (2008)Google Scholar
  16. 16.
    Bobbo, S., Cossalter, V., Massaro, M., Peretto, M.: Application of the optimal maneuver method for enhancing racing motorcycle performance. Int. J. Passeng. Cars Mech. Syst. 1(1), 1311–1318 (2009)Google Scholar
  17. 17.
    Tavernini, D., Massaro, M., Velenis, E., Katzourakis, D., Lot, R.: Minimum time cornering: the effect of road surface and car transmission layout. Veh. Syst. Dyn. 51(10), 1533–1547 (2013)CrossRefGoogle Scholar
  18. 18.
    Tavernini, D., Velenis, E., Lot, R., Massaro, M.: The optimality of the handbrake cornering technique. J. Dyn. Syst. Meas. Control 136(4), 041019 (2014)CrossRefGoogle Scholar
  19. 19.
    Perantoni, G., Limebeer, D.J.N.: Optimal control for a formula one car with variable parameters. Veh. Syst. Dyn. 52(5), 653–678 (2014)CrossRefGoogle Scholar
  20. 20.
    Limebeer, D.J.N., Perantoni, G., Rao, A.V.: Optimal control of formula one car energy recovery systems. Int. J. Control 87(10), 2065–2080 (2014)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Masouleh, M.I., Limebeer, D.J.N.: Optimizing the aero-suspension interactions in a formula one car. IEEE Trans. Control Syst. Technol. 24(3), 912–927 (2016)CrossRefGoogle Scholar
  22. 22.
    Tremlett, A., Massaro, M., Purdy, D., Velenis, E., Assadian, F., Moore, A., Halley, M.: Optimal control of motorsport differentials. Veh. Syst. Dyn. 53(12), 1772–1794 (2015)CrossRefGoogle Scholar
  23. 23.
    Tremlett, A., Limebeer, D.J.N.: Optimal tyre usage for a formula one car. Veh. Syst. Dyn. 54(10), 1448–1473 (2016)CrossRefGoogle Scholar
  24. 24.
    Dal Bianco, N., Lot, R., Gadola, M.: Minimum time optimal control simulation of a GP2 race car. Proc. Inst. Mech. Eng. Part D: J. Automob. Eng. 232(9), 1180–1195 (2017)CrossRefGoogle Scholar
  25. 25.
    Dal Bianco, N., Bertolazzi, E., Biral, F., Massaro, M.: Comparison of direct and indirect methods for minimum lap time optimal control problems. Veh. Syst. Dyn. 57(5), 1–32 (2019) Google Scholar
  26. 26.
    Limebeer, D.J.N., Massaro, M.: Dynamics and Optimal Control of Road Vehicles. Oxford University Press, Oxford (2018)zbMATHCrossRefGoogle Scholar
  27. 27.
    Veneri, M., Massaro, M.: A free-trajectory quasi-steady-state optimal-control method for minimum lap-time of race vehicles. Veh. Syst. Dyn. 1–22 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Industrial EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations