Advertisement

Schrödinger Operators

  • David Borthwick
Chapter
  • 200 Downloads
Part of the Graduate Texts in Mathematics book series (GTM, volume 284)

Abstract

The development of spectral theory in the 20th century was motivated in large part by quantum mechanics. In this chapter we develop basic applications of spectral theory to the theory of Schrödinger operators.

References

  1. 24.
    Davies, E.B.: Spectral Theory and Differential Operators. Cambridge Studies in Advanced Mathematics, vol. 42. Cambridge University Press, Cambridge (1995)Google Scholar
  2. 28.
    Edmunds, D.E., Evans, W.D.: Spectral Theory and Differential Operators. Oxford Mathematical Monographs, Oxford University Press, Oxford (2018)CrossRefGoogle Scholar
  3. 40.
    Gustafson, S.J., Sigal, I.M.: Mathematical Concepts of Quantum Mechanics. Universitext, 2nd edn. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  4. 41.
    Hall, B.C.: Quantum Theory for Mathematicians. Graduate Texts in Mathematics, vol. 267. Springer, New York (2013)CrossRefGoogle Scholar
  5. 44.
    Hislop, P.D., Sigal, I.M.: Introduction to Spectral Theory. Applied Mathematical Sciences, vol. 113. Springer, Berlin (1996). With applications to Schrödinger operatorsCrossRefGoogle Scholar
  6. 49.
    Kato, T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995). Reprint of the 1980 editionCrossRefGoogle Scholar
  7. 50.
    Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am. Math. Soc. 70, 195–211 (1951)zbMATHGoogle Scholar
  8. 61.
    Magnus, W., Winkler, S.: Hill’s Equation. Dover, New York (1979). Corrected reprint of the 1966 editionGoogle Scholar
  9. 64.
    Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V.: NIST Digital Library of Mathematical Functions (2016). http://dlmf.nist.gov/. Release 1.0.19
  10. 70.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic, London (1975)Google Scholar
  11. 71.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic, London (1978)Google Scholar
  12. 72.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. III. Scattering Theory. Academic, London (1979)Google Scholar
  13. 73.
    Rellich, F.: Störungstheorie der Spektralzerlegung. Math. Ann. 116, 555–570 (1939)CrossRefGoogle Scholar
  14. 82.
    Simon, B.: Semiclassical analysis of low lying eigenvalues. I. Nondegenerate minima: asymptotic expansions. Ann. Inst. H. Poincaré Sect. A (N.S.) 38, 295–308 (1983)Google Scholar
  15. 91.
    Teschl, G.: Ordinary Differential Equations and Dynamical Systems. Graduate Studies in Mathematics, vol. 140. American Mathematical Society, Providence (2012)Google Scholar
  16. 96.
    Yafaev, D.R.: Mathematical Scattering Theory. Analytic Theory. Mathematical Surveys and Monographs, vol. 158. American Mathematical Society, Providence (2010)Google Scholar
  17. 97.
    Zworski, M.: Semiclassical Analysis. Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence (2012)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • David Borthwick
    • 1
  1. 1.Department of MathematicsEmory UniversityAtlantaUSA

Personalised recommendations