Spermatozoal Chromatin Structure: Role in Sperm Functions and Fertilization

  • Sara Marchiani
  • Lara Tamburrino
  • Monica Muratori
  • Elisabetta BaldiEmail author


It is well known that sperm is a vehicle that delivers the haploid paternal genome to the oocyte and that an intact and complete genetic material is required for normal embryo development. During spermiogenesis, the formation of mature spermatozoa results in an extreme compacted DNA in sperm nucleus with respect to somatic nucleus. To reach such compaction, a dramatic reorganization occurs in developing spermatids where the vast majority of somatic histones are replaced by small basic proteins called protamines. The improper histone replacement or a deficient protamination may not only be a marker of abnormal spermiogenesis but also affect oocyte fertilization and reproductive outcomes. The paternal genome is considered to be inactive, and the role of retained histones emerged in recent studies demonstrating that sperm histones inherited by the embryo deliver epigenetic marks involved in the activation of key genes of embryogenesis. Consequently, the chromatin status of spermatozoa may affect not only the process of oocyte fertilization but also the development and the health of the offspring indicating that the role of sperm chromatin is more complex than previously believed. In this chapter, we illustrate the sperm chromatin structure and organization. Additionally, we describe in details the sperm chromatin abnormalities frequently found in human mature spermatozoa and their possible causes. We also review the evidences reported in literature regarding the association between sperm DNA abnormalities and male infertility as well as natural and assisted reproduction outcomes.

Finally, we depict the actual tests used in the research laboratories to detect such sperm chromatin anomalies in order to better understand their potential and clinical application in the routine practice for the diagnosis of male reproductive health.


Sperm chromatin Chromatin maturity Sperm functions Sperm nucleus DNA damage Male infertility Protamines Histones Epigenetic inheritance Assisted reproduction 


  1. 1.
    Meyer RG, Ketchum CC, Meyer-Ficca ML. Heritable sperm chromatin epigenetics: a break to remember. Biol Reprod. 2017;97(6):784–97.PubMedCrossRefGoogle Scholar
  2. 2.
    Gross DS, Chowdhary S, Anandhakumar J, Kainth AS. Chromatin. Curr Biol. 2015;25(24):R1158–63. Erratum in: Curr Biol. 2016 Feb 22;26(4):556.PubMedCrossRefGoogle Scholar
  3. 3.
    Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389(6648):251–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Ward WS. Organization of sperm DNA by the nuclear matrix. Am J Clin Exp Urol. 2018;6(2):87–92. Review.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Ward WS. Function of sperm chromatin structural elements in fertilization and development. Mol Hum Reprod. 2010;16(1):30–6. Review.PubMedCrossRefGoogle Scholar
  6. 6.
    Steger K, Balhorn R. Sperm nuclear protamines: a checkpoint to control sperm chromatin quality. Anat Histol Embryol. 2018;47(4):273–9. Review.PubMedCrossRefGoogle Scholar
  7. 7.
    Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.PubMedCrossRefGoogle Scholar
  8. 8.
    Oliva R, Mezquita C. Marked differences in the ability of distinct protamines to disassemble nucleosomal core particles in vitro. Biochemistry. 1986;25(21):6508–11.PubMedCrossRefGoogle Scholar
  9. 9.
    Montellier E, Boussouar F, Rousseaux S, Zhang K, Buchou T, Fenaille F, et al. Chromatin-to-nucleoprotamine transition is controlled by the histone H2B variant TH2B. Genes Dev. 2013;27(15):1680–92.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Govin J, Caron C, Lestrat C, Rousseaux S, Khochbin S. The role of histones in chromatin remodelling during mammalian spermiogenesis. Eur J Biochem. 2004;271(17):3459–69. Review.PubMedCrossRefGoogle Scholar
  11. 11.
    Zhao M, Shirley CR, Hayashi S, Marcon L, Mohapatra B, Suganuma R, et al. Transition nuclear proteins are required for normal chromatin condensation and functional sperm development. Genesis. 2004;38(4):200–13.PubMedCrossRefGoogle Scholar
  12. 12.
    Shirley CR, Hayashi S, Mounsey S, Yanagimachi R, Meistrich ML. Abnormalities and reduced reproductive potential of sperm from Tnp1- and Tnp2-null double mutant mice. Biol Reprod. 2004;71(4):1220–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Cho C, Willis WD, Goulding EH, Jung-Ha H, Choi YC, Hecht NB, et al. Haploinsufficiency of protamine-1 or −2 causes infertility in mice. Nat Genet. 2001;28(1):82–6.PubMedGoogle Scholar
  14. 14.
    Cho C, Jung-Ha H, Willis WD, Goulding EH, Stein P, Xu Z, et al. Protamine 2 deficiency leads to sperm DNA damage and embryo death in mice. Biol Reprod. 2003;69(1):211–7.PubMedCrossRefGoogle Scholar
  15. 15.
    Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):227. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Carrell DT, Liu L. Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl. 2001;22(4):604–10.PubMedPubMedCentralGoogle Scholar
  17. 17.
    Gatewood JM, Cook GR, Balhorn R, Schmid CW, Bradbury EM. Isolation of four core histones from human sperm chromatin representing a minor subset of somatic histones. J Biol Chem. 1990;265(33):20662–6.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Wykes SM, Krawetz SA. The structural organization of sperm chromatin. J Biol Chem. 2003;278(32):29471–7. Epub 2003 May 29.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kuretake S, Kimura Y, Hoshi K, Yanagimachi R. Fertilization and development of mouse oocytes injected with isolated sperm heads. Biol Reprod. 1996;55(4):789–95.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Ogura A, Matsuda J, Yanagimachi R. Birth of normal young after electrofusion of mouse oocytes with round spermatids. Proc Natl Acad Sci U S A. 1994;91(16):7460–2.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hammoud SS, Nix DA, Zhang H, Purwar J, Carrell DT, Cairns BR. Distinctive chromatin in human sperm packages genes for embryo development. Nature. 2009;460(7254):473–8.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Ihara M, Meyer-Ficca ML, Leu NA, Rao S, Li F, Gregory BD, et al. Paternal poly (ADP-ribose) metabolism modulates retention of inheritable sperm histones and early embryonic gene expression. PLoS Genet. 2014;10(5):e1004317.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Carone BR, Hung JH, Hainer SJ, Chou MT, Carone DM, Weng Z, et al. High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell. 2014;30(1):11–22.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gannon JR, Emery BR, Jenkins TG, Carrell DT. The sperm epigenome: implications for the embryo. Adv Exp Med Biol. 2014;791:53–66. Review.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Ly L, Chan D, Trasler JM. Developmental windows of susceptibility for epigenetic inheritance through the male germline. Semin Cell Dev Biol. 2015;43:96–105.. ReviewPubMedCrossRefGoogle Scholar
  26. 26.
    Ro S, Park C, Sanders KM, McCarrey JR, Yan W. Cloning and expression profiling of testis-expressed microRNAs. Dev Biol. 2007;311(2):592–602.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Li T, Vu TH, Ulaner GA, Littman E, Ling JQ, Chen HL, et al. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod. 2005;11(9):631–40.PubMedCrossRefGoogle Scholar
  28. 28.
    Marques CJ, Costa P, Vaz B, Carvalho F, Fernandes S, Barros A, et al. Abnormal methylation of imprinted genes in human sperm is associated with oligozoospermia. Mol Hum Reprod. 2008;14(2):67–74.PubMedCrossRefGoogle Scholar
  29. 29.
    Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21(4):214–22.. ReviewPubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21(1):33–44.PubMedGoogle Scholar
  31. 31.
    Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology. 2002;60(6):1069–72.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Francis S, Yelumalai S, Jones C, Coward K. Aberrant protamine content in sperm and consequential implications for infertility treatment. Hum Fertil (Camb). 2014;17(2):80–9. Review.CrossRefGoogle Scholar
  33. 33.
    de Yebra L, Ballescá JL, Vanrell JA, Corzett M, Balhorn R, Oliva R. Detection of P2 precursors in the sperm cells of infertile patients who have reduced protamine P2 levels. Fertil Steril. 1998;69(4):755–9.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sonnack V, Failing K, Bergmann M, Steger K. Expression of hyperacetylated histone H4 during normal and impaired human spermatogenesis. Andrologia. 2002;34(6):384–90.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Zhang X, San Gabriel M, Zini A. Sperm nuclear histone to protamine ratio in fertile and infertile men: evidence of heterogeneous subpopulations of spermatozoa in the ejaculate. J Androl. 2006;27(3):414–20.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Jodar M, Oriola J, Mestre G, Castillo J, Giwercman A, Vidal-Taboada JM, et al. Polymorphisms, haplotypes and mutations in the protamine 1 and 2 genes. Int J Androl. 2011;34(5 Pt 1):470–85.. ReviewPubMedCrossRefGoogle Scholar
  37. 37.
    Aoki VW, Liu L, Carrell DT. A novel mechanism of protamine expression deregulation highlighted by abnormal protamine transcript retention in infertile human males with sperm protamine deficiency. Mol Hum Reprod. 2006a;12(1):41–50.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR. Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet. 2000;25(4):448–52.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT. DNA integrity is compromised in protamine-deficient human sperm. J Androl. 2005;26(6):741–8.PubMedCrossRefGoogle Scholar
  40. 40.
    Simon L, Castillo J, Oliva R, Lewis SE. Relationships between human sperm protamines, DNA damage and assisted reproduction outcomes. Reprod Biomed Online. 2011;23(6):724–34.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Marchiani S, Tamburrino L, Olivito B, Betti L, Azzari C, Forti G, et al. Characterization and sorting of flow cytometric populations in human semen. Andrology. 2014;2(3):394–401.PubMedCrossRefGoogle Scholar
  42. 42.
    Muratori M, Tamburrino L, Marchiani S, Cambi M, Olivito B, Azzari C, et al. Investigation on the origin of sperm DNA fragmentation: role of apoptosis, immaturity and oxidative stress. Mol Med. 2015;21:109–22.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    McPherson S, Longo FJ. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem. 1993;37(2):109–28. Review.PubMedPubMedCentralGoogle Scholar
  44. 44.
    Ni K, Spiess AN, Schuppe HC, Steger K. The impact of sperm protamine deficiency and sperm DNA damage on human male fertility: a systematic review and meta-analysis. Andrology. 2016;4(5):789–99.. ReviewPubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Sakkas D, Mariethoz E, Manicardi G, Bizzaro D, Bianchi PG, Bianchi U. Origin of DNA damage in ejaculated human spermatozoa. Rev Reprod. 1999;4(1):31–7. Review.CrossRefGoogle Scholar
  46. 46.
    Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ. Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod. 1998;13(6):1429–36.PubMedCrossRefGoogle Scholar
  47. 47.
    Talebi AR, Sarcheshmeh AA, Khalili MA, Tabibnejad N. Effects of ethanol consumption on chromatin condensation and DNA integrity of epididymal spermatozoa in rat. Alcohol. 2011;45(4):403–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Rahimipour M, Talebi AR, Anvari M, Sarcheshmeh AA, Omidi M. Effects of different doses of ethanol on sperm parameters, chromatin structure and apoptosis in adult mice. Eur J Obstet Gynecol Reprod Biol. 2013;170(2):423–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Hammadeh ME, Hamad MF, Montenarh M, Fischer-Hammadeh C. Protamine contents and P1/P2 ratio in human spermatozoa from smokers and non-smokers. Hum Reprod. 2010;25(11):2708–20.PubMedCrossRefGoogle Scholar
  50. 50.
    Yu B, Qi Y, Liu D, Gao X, Chen H, Bai C, et al. Cigarette smoking is associated with abnormal histone-to-protamine transition in human sperm. Fertil Steril. 2014;101(1):51–57.e1.PubMedCrossRefGoogle Scholar
  51. 51.
    Cunningham KA, Beagley KW. Male genital tract chlamydial infection: implications for pathology and infertility. Biol Reprod. 2008;79(2):180–9.. ReviewPubMedCrossRefGoogle Scholar
  52. 52.
    Zeyad A, Hamad MF, Hammadeh ME. The effects of bacterial infection on human sperm nuclear protamine P1/P2 ratio and DNA integrity. Andrologia. 2018;50:e12841.CrossRefGoogle Scholar
  53. 53.
    O’Flaherty C, Vaisheva F, Hales BF, Chan P, Robaire B. Characterization of sperm chromatin quality in testicular cancer and Hodgkin's lymphoma patients prior to chemotherapy. Hum Reprod. 2008;23(5):1044–52.PubMedCrossRefGoogle Scholar
  54. 54.
    O'Flaherty CM, Chan PT, Hales BF, Robaire B. Sperm chromatin structure components are differentially repaired in cancer survivors. J Androl. 2012;33(4):629–36.PubMedCrossRefGoogle Scholar
  55. 55.
    Lusignan MF, Li X, Herrero B, Delbes G, Chan PTK. Effects of different cryopreservation methods on DNA integrity and sperm chromatin quality in men. Andrology. 2018;6(6):829–35.PubMedCrossRefGoogle Scholar
  56. 56.
    Tamburrino L, Cambi M, Marchiani S, Manigrasso I, Degl’Innocenti S, Forti G, et al. Sperm DNA fragmentation in cryopreserved samples from subjects with different cancers. Reprod Fertil Dev. 2017;29(4):637–45.PubMedCrossRefGoogle Scholar
  57. 57.
    Takeda N, Yoshinaga K, Furushima K, Takamune K, Li Z, Abe S, et al. Viable offspring obtained from Prm1-deficient sperm in mice. Sci Rep. 2016;6:27409.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Schneider S, Balbach M, Jan F Jikeli, Fietz D, Nettersheim D, Jostes S, et al. Re-visiting the Protamine-2 locus: deletion, but not haploinsufficiency, renders male mice infertile. Sci Rep. 2016;6:36764.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Balhorn R, Reed S, Tanphaichitr N. Aberrant protamine 1/protamine 2 ratios in sperm of infertile human males. Experientia. 1988;44(1):52–5.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Khara KK, Vlad M, Griffiths M, Kennedy CR. Human protamines and male infertility. J Assist Reprod Genet. 1997;14(5):282–90.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Mengual L, Ballescá JL, Ascaso C, Oliva R. Marked differences in protamine content and P1/P2 ratios in sperm cells from percoll fractions between patients and controls. J Androl. 2003;24(3):438–47.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Rogenhofer N, Dansranjavin T, Schorsch M, Spiess A, Wang H, von Schönfeldt V, et al. The sperm protamine mRNA ratio as a clinical parameter to estimate the fertilizing potential of men taking part in an ART programme. Hum Reprod. 2013;28(4):969–78.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    de Mateo S, Gázquez C, Guimerà M, Balasch J, Meistrich ML, Ballescà JL, et al. Protamine 2 precursors (Pre-P2), protamine 1 to protamine 2 ratio (P1/P2), and assisted reproduction outcome. Fertil Steril. 2009;91(3):715–22.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Tarozzi N, Nadalini M, Stronati A, Bizzaro D, Dal Prato L, Coticchio G, et al. Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online. 2009;18(4):486–95.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Talebi AR, Vahidi S, Aflatoonian A, Ghasemi N, Ghasemzadeh J, Firoozabadi RD, et al. Cytochemical evaluation of sperm chromatin and DNA integrity in couples with unexplained recurrent spontaneous abortions. Andrologia. 2012;44(Suppl 1):462–70.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Irez T, Sahmay S, Ocal P, Goymen A, Senol H, Erol N, et al. Investigation of the association between the outcomes of sperm chromatin condensation and decondensation tests, and assisted reproduction techniques. Andrologia. 2015;47(4):438–47.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Khalili MA, Nazari S, Dehghani-Firouzabadi R, Talebi A, Baghazadeh-Naeini S, Sadeghian-Nodoshan F, et al. Comparing the roles of sperm chromatin integrity and apoptosis in intrauterine insemination outcomes of couples with mild male and female factor infertility. J Reprod Infertil. 2014;15(1):35–40.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Marchiani S, Tamburrino L, Benini F, Fanfani L, Dolce R, Rastrelli G, et al. Chromatin Protamination and Catsper expression in spermatozoa predict clinical outcomes after assisted reproduction programs. Sci Rep. 2017;7(1):15122.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Simon L, Liu L, Murphy K, Ge S, Hotaling J, Aston KI, et al. Comparative analysis of three sperm DNA damage assays and sperm nuclear protein content in couples undergoing assisted reproduction treatment. Hum Reprod. 2014;29(5):904–17.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006b;27(6):890–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Zini A. Are sperm chromatin and DNA defects relevant in the clinic? Syst Biol Reprod Med. 2011;57(1–2):78–85. Review.PubMedCrossRefGoogle Scholar
  72. 72.
    Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, et al. Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod. 2007;22(1):174–9.PubMedCrossRefGoogle Scholar
  73. 73.
    Bungum M. Sperm DNA integrity assessment: a new tool in diagnosis and treatment of fertility. Obstet Gynecol Int. 2012;2012:531042.PubMedCrossRefGoogle Scholar
  74. 74.
    Osman A, Alsomait H, Seshadri S, El-Toukhy T, Khalaf Y. The effect of sperm DNA fragmentation on live birth rate after IVF or ICSI: a systematic review and meta-analysis. Reprod Biomed Online. 2015;30(2):120–7. Review.CrossRefGoogle Scholar
  75. 75.
    Robinson L, Gallos ID, Conner SJ, Rajkhowa M, Miller D, Lewis S, et al. The effect of sperm DNA fragmentation on miscarriage rates: a systematic review and meta-analysis. Hum Reprod. 2012;27(10):2908–17. Review.CrossRefGoogle Scholar
  76. 76.
    Simon L, Aston KI, Emery BR, Hotaling J, Carrell DT. Sperm DNA damage output parameters measured by the alkaline Comet assay and their importance. Andrologia. 2017;49(2)CrossRefGoogle Scholar
  77. 77.
    Hammadeh ME, Stieber M, Haidl G, Schmidt W. Association between sperm cell chromatin condensation, morphology based on strict criteria, and fertilization, cleavage and pregnancy rates in an IVF program. Andrologia. 1998;30(1):29–35.PubMedCrossRefGoogle Scholar
  78. 78.
    Hamad MF, Shelko N, Kartarius S, Montenarh M, Hammadeh ME. Impact of cigarette smoking on histone (H2B) to protamine ratio in human spermatozoa and its relation to sperm parameters. Andrology. 2014;2(5):666–77.PubMedCrossRefGoogle Scholar
  79. 79.
    Depa-Martynow M, Kempisty B, Jagodziński PP, Pawelczyk L, Jedrzejczak P. Impact of protamine transcripts and their proteins on the quality and fertilization ability of sperm and the development of preimplantation embryos. Reprod Biol. 2012;12(1):57–72.PubMedCrossRefGoogle Scholar
  80. 80.
    McLay DW, Clarke HJ. Remodelling the paternal chromatin at fertilization in mammals. Reproduction. 2003;125(5):625–33. Review.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Li Y, Sheng J, Sha J, Han X. The toxic effects of microcystin-LR on the reproductive system of male rats in vivo and in vitro. Reprod Toxicol. 2008;26(3–4):239–45.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Pizzol D, Bertoldo A, Foresta C. Male infertility: biomolecular aspects. Biomol Concepts. 2014;5(6):449–56. Review.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Iranpour FG. Impact of sperm chromatin evaluation on fertilization rate in intracytoplasmic sperm injection. Adv Biomed Res. 2014;3:229.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Nasr-Esfahani MH, Razavi S, Mardani M. Relation between different human sperm nuclear maturity tests and in vitro fertilization. J Assist Reprod Genet. 2001;18(4):219–25.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Nasr-Esfahani MH, Salehi M, Razavi S, Anjomshoa M, Rozbahani S, Moulavi F, et al. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod Biomed Online. 2005;11(2):198–205.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Razavi S, Nasr-Esfahani MH, Mardani M, Mafi A, Moghdam A. Effect of human sperm chromatin anomalies on fertilization outcome post-ICSI. Andrologia. 2003;35(4):238–43.PubMedCrossRefGoogle Scholar
  87. 87.
    Mangoli E, Khalili MA, Talebi AR, Ghasemi-Esmailabad S, Hosseini A. Is there any correlation between sperm parameters and chromatin quality with embryo morphokinetics in patients with male infertility? Andrologia. 2018;50(5):e12997.PubMedCrossRefGoogle Scholar
  88. 88.
    Sadeghi MR, Hodjat M, Lakpour N, Arefi S, Amirjannati N, Modarresi T, et al. Effects of sperm chromatin integrity on fertilization rate and embryo quality following intracytoplasmic sperm injection. Avicenna J Med Biotechnol. 2009;1(3):173–80.PubMedPubMedCentralGoogle Scholar
  89. 89.
    Nijs M, Creemers E, Cox A, Franssen K, Janssen M, Vanheusden E, et al. Chromomycin A3 staining, sperm chromatin structure assay and hyaluronic acid binding assay as predictors for assisted reproductive outcome. Reprod Biomed Online. 2009;19(5):671–84.PubMedCrossRefGoogle Scholar
  90. 90.
    Irez T, Dayioglu N, Alagöz M, Karatas S, Güralp O. The use of aniline blue chromatin condensation test on prediction of pregnancy in mild male factor and unexplained male infertility. Andrologia. 2018;19:e13111.CrossRefGoogle Scholar
  91. 91.
    Gill K, Rosiak A, Gaczarzewicz D, Jakubik J, Kurzawa R, Kazienko A, et al. The effect of human sperm chromatin maturity on ICSI outcomes. Hum Cell. 2018;31(3):220–31.PubMedCrossRefGoogle Scholar
  92. 92.
    Asmarinah, Syauqy A, Umar LA, Lestari SW, Mansyur E, Hestiantoro A, et al. Sperm chromatin maturity and integrity correlated to zygote development in ICSI program. Syst Biol Reprod Med. 2016;62(5):309–16.PubMedCrossRefGoogle Scholar
  93. 93.
    Nasr-Esfahani MH, Salehi M, Razavi S, Mardani M, Bahramian H, Steger K, et al. Effect of protamine-2 deficiency on ICSI outcome. Reprod Biomed Online. 2004;9(6):652–8.PubMedCrossRefGoogle Scholar
  94. 94.
    Aoki VW, Liu L, Jones KP, Hatasaka HH, Gibson M, Peterson CM, et al. Sperm protamine 1/protamine 2 ratios are related to in vitro fertilization pregnancy rates and predictive of fertilization ability. Fertil Steril. 2006c;86(5):1408–15.PubMedCrossRefGoogle Scholar
  95. 95.
    Fournier C, Labrune E, Lornage J, Soignon G, Giscard d'Estaing S, Guérin JF, et al. The impact of histones linked to sperm chromatin on embryo development and ART outcome. Andrology. 2018;6(3):436–45.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Sara Marchiani
    • 1
  • Lara Tamburrino
    • 2
  • Monica Muratori
    • 3
  • Elisabetta Baldi
    • 2
    Email author
  1. 1.Andrologia, Endocrinologia femminile e Incongruenza di genere- Dipartimento Materno InfantileAzienda Ospedaliero Universitaria CareggiFlorenceItaly
  2. 2.Experimental and Clinical MedicineUniversity of FlorenceFlorenceItaly
  3. 3.Experimental and Clinical Biomedical Sciences “Mario Serio”University of FlorenceFlorenceItaly

Personalised recommendations