Sperm Aneuploidy

  • Lorena Rodrigo VivóEmail author


Sperm aneuploidy testing has been proposed for clinical diagnosis of possible causes of male infertility. We describe the use of fluorescence in situ hybridization (FISH) for sperm aneuploidy testing and review causes and implications of sperm aneuploidy at clinical, embryo, and offspring levels. Due to infertility problems or genetic risk for offspring, genetic counseling and reproductive options, including preimplantation genetic testing for aneuploidy (PGT-A), prenatal testing, or sperm donation, should be offered to couples with increased sperm aneuploidy.


Sperm Aneuploidy Male infertility Preimplantation genetic testing 


  1. 1.
    WHO Scientific Group on Recent Advances in Medically Assisted Conception & World Health Organization. Recent advances in medically assisted conception: report of a WHO scientific group [meeting held in Geneva from 2 to 6 April 1990]. Geneva: World Health Organization; 1992.Google Scholar
  2. 2.
    Van Steirteghem A, Bonduelle M, Devroey P, et al. Follow-up of children born after ICSI. Hum Reprod Update. 2002;8:111–6.CrossRefGoogle Scholar
  3. 3.
    Bonduelle M, Van Assche E, Joris H, et al. Prenatal testing in ICSI pregnancies: incidence of chromosomal anomalies in 1586 karyotypes and relation to sperm parameters. Hum Reprod. 2002;17:2600–14.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Hassold TJ. A cytogenetic study of repeated spontaneous abortions. Am J Med Genet. 1980;32:723–30.Google Scholar
  5. 5.
    Campos-Galindo I, García-Herrero S, Martínez-Conejero JA, et al. Molecular analysis of products of conception obtained by hysteroembryoscopy from infertile couples. J Assist Reprod Genet. 2015;32:839–48.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Pawlowitski IH, Pearson PL. Chromosomal aneuploidy in human spermatozoa. Humangenetik. 1972;16:119–22.CrossRefGoogle Scholar
  7. 7.
    Rudak E, Jacobs PA, Yanagimachi R. Direct analysis of the chromosome constitution of human spermatozoa. Nature. 1978;274:911–3.PubMedCrossRefGoogle Scholar
  8. 8.
    Joseph AM, Gosden JR, Chandley AC. Estimation of aneuploidy levels in human spermatozoa using chromosome-specific probes and in situ hybridization. Hum Genet. 1984;66:234–8.PubMedCrossRefGoogle Scholar
  9. 9.
    Wyrobek AJ, Alhborn T, Balhorn R, et al. Fluorescence in situ hybridization to Y chromosome in decondensed human sperm nuclei. Mol Reprod Dev. 1990;27:200–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Egozcue J, Blanco J, Vidal F. Chromosome studies in human sperm nuclei using fluorescence in-situ hybridization (FISH). Hum Reprod Update. 1997;3:441–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Blanco J, Egozcue J, Vidal F. Incidence of chromosome 21 disomy in human spermatozoa as determined by fluorescente in-situ hybridization. Hum Reprod. 1996;11:722–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Rodrigo L, Peinado V, Mateu E, et al. Impact of different patterns of sperm chromosomal abnormalities on the chromosomal constitution of preimplantation embryos. Fertil Steril. 2010;94:1380–6.PubMedCrossRefGoogle Scholar
  13. 13.
    González-Merino E, Hans C, Abramowicz M, et al. Aneuploidy study in sperm and preimplantation embryos from nonmosaic 47,XYY men. Fertil Steril. 2007;88:600–6.PubMedCrossRefGoogle Scholar
  14. 14.
    García-Quevedo L, Blanco J, Serrate Z, et al. Hidden mosaicism in patients with Klinefelter’s syndrome: implications for genetic reproductive counselling. Hum Reprod. 2011;26:3486–93.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Vialard F, Bailly M, Bouazzi H, et al. The high frequency of sperm aneuploidy in Klinefelter patients and in non-obstructive azoospermia is due to meiotic errors in euploid spermatocytes. J Androl. 2012;33:1352–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Blanco J, Egozcue J, Vidal F. Meiotic behaviour of the sex chromosomes in three patients with sex chromosome anomalies (47,XXY, mosaic 46,XY/47,XXY and 47,XYY) assessed by fluorescence in-situ hybridization. Hum Reprod. 2001;16:887–92.PubMedCrossRefGoogle Scholar
  17. 17.
    Rosenbusch B. Somatic chromosomal abnormalities in couples undergoing infertility treatment by intracytoplasmic sperm injection. J Genet. 2010;89:105–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Antón E, Vidal F, Blanco J. Role of sperm FISH studies in the genetic reproductive advice of structural reorganization carriers. Hum Reprod. 2007;22:2088–92.PubMedCrossRefGoogle Scholar
  19. 19.
    Ma S, Ferguson K, Arsovska S, et al. Reduced recombination associated with the production of aneuploid sperm in an infertile man: a case report. Hum Reprod. 2006;21:980–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Ferguson KA, Chan Wong E, Chow V, et al. Abnormal meiotic recombination in infertile men and its association with sperm aneuploidy. Hum Mol Genet. 2007;16:2870–9.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Sun F, Mikhaail-Philips M, Oliver-Bonet M, et al. Reduced meiotic recombination on the XY bivalent is correlated with an increased incidence of sex chromosome aneuploidy in men with nonobstructive azoospermia. Mol Hum Reprod. 2008;14:399–404.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Peinado Cervera V. Estudio de anomalías meióticas y aneuploidías en pacientes con azoospermia secretora. Valencia: Universidad de Valencia; 2016. Scholar
  23. 23.
    Vendrell JM, García F, Veiga A, et al. Meiotic abnormalities and spermatogenic parameters in severe oligoasthenozoospermia. Hum Reprod. 1999;14:375–8.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Egozcue S, Vendrell JM, Garcia F, et al. Increased incidence of meiotic anomalies in oligoasthenozoospermic males preselected for intracytoplasmic sperm injection. J Assist Reprod Genet. 2000;17:307–9.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Mougou-Zerelli S, Brahem S, Kammoun M, et al. Detection of aneuploidy rate for chromosomes X, Y and 8 by fluorescence in-situ hybridization in spermatozoa from patients with severe non-obstructive oligozoospermia. J Assist Reprod Genet. 2011;28:971–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Mokánszki A, Molnár Z, Ujfalusi A, et al. Correlation study between sperm concentration, hyaluronic acid-binding capacity and sperm aneuploidy in Hungarian patients. Reprod Biomed Online. 2012;25:620–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Durak Aras B, Aras I, Can C, et al. Exploring the relationship between the severity of oligozoospermia and the frequencies of sperm chromosome aneuploidies. Andrologia. 2012;44:416–22.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Petousis S, Prapas Y, Papatheodorou A, et al. Fluorescence in situ hybridisation sperm examination is significantly impaired in all categories of male infertility. Andrologia. 2018;50(2) Scholar
  29. 29.
    Rubio C, Gil-Salom M, Simón C, et al. Incidence of sperm chromosomal abnormalities in a risk population: relationship with sperm quality and ICSI outcome. Hum Reprod. 2001;16:2084–92.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Martin RH, Rademaker AW, Greene C, et al. A comparison of the frequency of sperm chromosome abnormalities in men with mild, moderate and severe oligozoospermia. Biol Reprod. 2003;69:535–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nagvenkar P, Zaveri K, Hinduja I. Comparison of the sperm aneuploidy rate in severe oligozoospermic and oligozoospermic men and its relation to intracytoplasmic sperm injection outcome. Fertil Steril. 2005;84:925–31.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Bernardini L, Gianaroli L, Fortini D, et al. Frequency of hyper-, hypohaploidy an diploidy in ejaculate, epididymal and testicular germ cells of infertile patients. Hum Reprod. 2000;15:2165–72.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Levron J, Aviram-Goldring A, Madgar I, et al. Sperm chromosome abnormalities in men with severe male factor infertility who are undergoing in vitro fertilization with intracytoplasmic sperm injection. Fertil Steril. 2001;76:479–84.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Burrello N, Calogro AE, De Palma A, et al. Chromosome analysis of epididymal and testicular spermatozoa in patients with azoospermia. Eur J Hum Genet. 2002;10:362–6.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Mateizel I, Verheyen G, Van Assche E, et al. FISH analysis of chromosome X, Y and 18 abnormalities in testicular sperm from azoospermic patients. Hum Reprod. 2002;17:2249–57.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Palermo GD, Colombero LT, Hariprashad JJ, et al. Chromosome analysis of epididymal and testicular sperm in azoospermic patients undergoing ICSI. Hum Reprod. 2002;17:570–5.CrossRefGoogle Scholar
  37. 37.
    Rodrigo L, Rubio C, Mateu E, et al. Analysis of chromosomal abnormalities in testicular and epididymal spermatozoa from azoospermic ICSI patients, by fluorescence in-situ hybridisation (FISH). Hum Reprod. 2004;19:118–23.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Rodrigo L, Rubio C, Peinado V, et al. Testicular sperm from patients with obstructive and nonobstructive azoospermia: aneuploidy risk and reproductive prognosis using testicular sperm from fertile donors as control samples. Fertil Steril. 2011;95:1005–12.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Samura O, Miharu N, He H, et al. Assessment of sex chromosome ratio and aneuploidy rate in motile spermatozoa selected by three different methods. Hum Reprod. 1997;12:2437–42.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Zeyneloglu HB, Baltaci V, Ege S, et al. Detection of chromosomal abnormalities by fluorescent in-situ hybridization in immotile viable spermatozoa determined by hypo-osmotic sperm swelling test. Hum Reprod. 2000;15:853–6.PubMedCrossRefGoogle Scholar
  41. 41.
    Hristova R, Ko E, Greene C, et al. Chromosome abnormalities in sperm from infertile men with asthenoteratozoospermia. Biol Reprod. 2002;66:1781–3.PubMedCrossRefGoogle Scholar
  42. 42.
    Tempest HG, Homa ST, Dalakiouridou M, et al. The association between male infertility and sperm disomy: evidence for variation in disomy levels among individuals and correlation between particular semen parameters and disomy of specific chromosome pairs. Reprod Biol Endocrinol. 2004;2:82.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Gole LA, Wong PF, Ng PL, et al. Does sperm morphology play a significant role in increased sex chromosomal disomy? A comparison between patients with teratozoospermia and OAT by FISH. J Androl. 2001;22:759–63.PubMedGoogle Scholar
  44. 44.
    Burrello N, Arcidiacono G, Vicari E, et al. Morphologically normal spermatozoa of patients with secretory oligo-astheno-teratozoospermia have an increased aneuploidy rate. Hum Reprod. 2004;19:2298–302.PubMedCrossRefGoogle Scholar
  45. 45.
    Celik-Ozenci C, Jakab A, Kovacs T, et al. Sperm selection for ICSI: shape properties do not predict the absence or presence of numerical chromosomal aberrations. Hum Reprod. 2004;19:2052–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Mateu E, Rodrigo L, Prados N, et al. High incidence of chromosomal abnormalities in large-headed and multiple-tailed spermatozoa. J Androl. 2006;27:6–10.PubMedCrossRefGoogle Scholar
  47. 47.
    Brahem S, Mehdi M, Elghezal H, et al. Study of aneuploidy rate and sperm DNA fragmentation in large-headed, multiple-tailed spermatozoa. Andrologia. 2012;44:130–5.PubMedCrossRefGoogle Scholar
  48. 48.
    Robbins WA, Meistrich ML, Moore D, et al. Chemotherapy induces transient sex chromosomal and autosomal aneuploidy in human sperm. Nat Genet. 1997;16:74–8.PubMedCrossRefGoogle Scholar
  49. 49.
    Martin RH, Ernst S, Rademaker A, et al. Analysis of sperm chromosome complements before, during, and after chemotherapy. Cancer Genet Cytogenet. 1999;108:133–6.PubMedCrossRefGoogle Scholar
  50. 50.
    Frias S, Van Hummelen P, Meistrich ML, et al. NOVP chemotherapy for Hodgkin’s disease transiently induces sperm aneuploidies associated with the major clinical aneuploidy syndromes involving chromosomes X, Y, 18, and 21. Cancer Res. 2003;63:44–51.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Tempest HG, Ko E, Chan P, et al. Sperm aneuploidy frequencies analysed before and after chemotherapy in testicular cancer and Hodgkin’s lymphoma patients. Hum Reprod. 2008;23:251–8.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Viviani S, Ragni G, Santoro A, et al. Testicular dysfunction in Hodgkin’s disease before and after treatment. Eur J Cancer. 1991;27:1389–92.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Rueffer U, Breuer K, Josting A, et al. Male gonadal dysfunction in patients with Hodgkin’s disease prior to treatment. Ann Oncol. 2001;12:1307–11.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Giorlandino C, Calugi G, Iaconianni L, et al. Spermatozoa with chromosomal abnormalities may result in a higher rate of recurrent abortion. Fertil Steril. 1998;70:576–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Rubio C, Simón C, Blanco J, et al. Implications of sperm chromosome abnormalities in recurrent miscarriage. J Assist Reprod Genet. 1999;16:253–8.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Carrell DT, Wilcox AL, Lowy L, et al. Elevated sperm chromosome aneuploidy and apoptosis in patients with unexplained recurrent pregnancy loss. Obstet Gynecol. 2003;101:1229–35.PubMedGoogle Scholar
  57. 57.
    Somprasit C, Aguinaga M, Cisneros PL, et al. Paternal gonadal mosaicism detected in a couple with recurrent abortions undergoing PGD: FISH analysis of sperm nuclei proves valuable. Reprod Biomed Online. 2004;9:225–30.PubMedCrossRefGoogle Scholar
  58. 58.
    Bernardini LM, Costa M, Bottazzi C, et al. Sperm aneuploidy and recurrent pregnancy loss. Reprod Biomed Online. 2004;9:312–20.PubMedCrossRefGoogle Scholar
  59. 59.
    Al-Hassan S, Hellani A, Al-Shahrani A, et al. Sperm chromosomal abnormalities in patients with unexplained recurrent abortions. Arch Androl. 2005;51:69–76.PubMedCrossRefGoogle Scholar
  60. 60.
    Esquerré-Lamare C, Walschaerts M, Chansel Debordeaux L, et al. Sperm aneuploidy and DNA fragmentation in unexplained recurrent pregnancy loss: a multicenter case-control study. Basic Clin Androl. 2018;2(28):4.CrossRefGoogle Scholar
  61. 61.
    Ramasamy R, Scovell JM, Kovac JR, et al. Fluorescence in situ hybridization detects increased sperm aneuploidy in men with recurrent pregnancy loss. Fertil Steril. 2015;103:906–9.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Petit FM, Frydman N, Benkhalifa M, et al. Could sperm aneuploidy rate determination be used as a predictive test before intracytoplasmic sperm injection? J Androl. 2005;26:235–41.PubMedCrossRefGoogle Scholar
  63. 63.
    Burrello N, Vicari E, Shin P, et al. Lower sperm aneuploidy frequency is associated with high pregnancy rates in ICSI programmes. Hum Reprod. 2003;18:1371–6.PubMedCrossRefGoogle Scholar
  64. 64.
    Nicopoullos JD, Gilling-Smith C, Almeida PA, et al. The role of sperm aneuploidy as a predictor of the success of intracytoplasmic sperm injection? Hum Reprod. 2008;23:240–50.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Blanco J, Gabau E, Gómez D, et al. Chromosome 21 disomy in the spermatozoa of the fathers of children with trisomy 21, in a population with a high prevalence of Down syndrome: increased incidence in cases of paternal origin. Am J Hum Genet. 1998;63:1067–72.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Martínez-Pasarell O, Nogués C, Bosch M, et al. Analysis of sex chromosome aneuploidy in sperm from fathers of Turner syndrome patients. Hum Genet. 1999;104:345–9.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Eskenazi B, Wyrobek AJ, Kidd SA, et al. Sperm aneuploidy in fathers of children with paternally and maternally inherited Klinefelter syndrome. Hum Reprod. 2002;17:576–83.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tang SS, Gao H, Robinson WP, et al. An association between sex chromosomal aneuploidy in sperm and an abortus with 45,X of paternal origin: possible transmission of chromosomal abnormalities through ICSI. Hum Reprod. 2004;19:147–51.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Pang MG, Hoegerman SF, Cuticchia AJ, et al. Detection of aneuploidy for chromosomes 4,6,7,8,9,10,11,12,13,17,18,21,X and Y by fluorescence in-situ hybridization in spermatozoa from nine patients with oligoasthenozoospermia undergoing intracytoplasmic sperm injection. Hum Reprod. 1999;14:1266–73.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Pfeffer J, Pang MG, Hoegerman SF, et al. Aneuploidy frequencies in semen fractions from ten oligoasthenoteratozoospermic patients donating sperm for intracytoplasmic sperm injection. Fertil Steril. 1999;72:472–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Calogero AE, De Palma A, Grazioso C, et al. High sperm aneuploidy rate in unselected infertile patients and its relationship with intracytoplasmic sperm injection outcome. Hum Reprod. 2001;16:1433–9.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Silber S, Escudero T, Lenahan K, et al. Chromosomal abnormalities in embryos derived from testicular sperm extraction. Fertil Steril. 2003;79:30–8.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Arán B, Veiga A, Vidal F, et al. Preimplantation genetic diagnosis in patients with male meiotic abnormalities. Reprod Biomed Online. 2004;8:470–6.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Platteau P, Staessen C, Michiels A, et al. Comparison of the aneuploidy frequency in embryos derived from testicular sperm extraction in obstructive and non-obstructive azoospermic men. Hum Reprod. 2004;19:1570–4.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Gianaroli L, Magli MC, Ferrareti AP. Sperm and blastomere aneuploidy detection in reproductive genetics and medicine. J Histochem Cytochem. 2005;53:261–7.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Rubio C, Rodrigo L, Pérez-Cano I, et al. FISH screening of aneuploidies in preimplantation embryos to improve IVF outcome. Reprod Biomed Online. 2005;11:497–506.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Sánchez-Castro M, Jiménez-Macedo AR, Sandalinas M, et al. Prognostic value of sperm fluorescence in situ hybridization analysis over PGD. Hum Reprod. 2009;24:1516–21.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Magli MC, Gianaroli L, Ferraretti AP, et al. Paternal contribution to aneuploidy in preimplantation embryos. Reprod Biomed Online. 2009;18:536–42.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Moosani N, Chernos J, Lowry RB, et al. A 47,XXY fetus resulting from ICSI in a man with an elevated frequency of 24,XY spermatozoa. Hum Reprod. 1999;14:1137–8.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Martínez-Pasarell O, Templado C, Vicens-Calvet E, et al. Paternal sex chromosome aneuploidy as a possible origin of Turner syndrome in monozygotic twins: case report. Hum Reprod. 1999;14:2735–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Lowe X, Eskenazi B, Nelson DO, et al. Frequency of XY sperm increases with age in fathers of boys with Klinefelter syndrome. Am J Hum Genet. 2001;69:1046–54.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Rubio C, Rodrigo L, Mir P, et al. Use of array comparative genomic hybridization (array-CGH) for embryo assessment: clinical results. Fertil Steril. 2013;99:1044–8.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.PGD Molecular Cytogenetics, IgenomixValenciaSpain

Personalised recommendations