Advertisement

Molecular Regulation of Sperm Production Cascade

  • Meghali Joshi
  • Rajender SinghEmail author
Chapter
  • 39 Downloads

Abstract

About 10–15% of the couples suffer from infertility worldwide, with male factor accounting for half of the infertility cases. Spermatogenesis is a complex process involving the interplay of thousands of genes, of which about 1000 are testis enriched with about 200 signature genes. Such a complex spatiotemporal molecular interplay is mandatory for orchestrating the most diverse cellular changes beginning with mitosis, going through meiosis, and terminating with cellular differentiation, ultimately resulting in the formation of a highly specialized, motile, and unique cellular entity called sperm. Mouse knockout studies have been instrumental in identifying the genes important for spermatogenesis. Till now, at least 388 genes have been reported to play roles in spermatogenesis in mouse. Human genetic analysis studies provided invaluable insights in identifying candidate genes. Recently, the implementation of whole genome studies has added more candidates that need further in-depth research for dissecting their biological roles. In this chapter, we have summarized the genes important for spermatogonial stem cell renewal, meiosis, and spermiogenesis and the association of mutations in these genes with human male infertility.

Keywords

Spermatogonial stem cells Self-renewal Differentiation Meiosis Spermiogenesis Mutation Infertility Spermatogenesis 

Notes

Acknowledgments

The authors would like to thank the Council of Scientific Research and Industrial Research (CSIR), Govt. of India, for financial help and CSIR-Central Drug Research Institute (CDRI) for providing working environment.

References

  1. 1.
    Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED. Mammalian spermatogenesis. In: Russell LD, Ettlin RA, Sinha Hikim AP, Clegg ED, editors. Histological and Histopathological Evaluation of the Testis. Clearwater: Cache River Press; 1990. P. 1–40.Google Scholar
  2. 2.
    Di Spiezio Sardo A, Di Carlo C, Minozzi S, Spinelli M, Pistotti V, Alviggi C, De Placido G, Nappi C, Bifulco G. Efficacy of hysteroscopy in improving reproductive outcomes of infertile couples: a systematic review and meta-analysis. Hum Reprod Update. 2016;22(4):479–96.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Stahl PJ, Schlegel PN. Genetic evaluation of the azoospermic or severely oligozoospermic male. Curr Opin Obstet Gynecol. 2012;24(4):221–8.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Miyamoto T, Minase G, Okabe K, Ueda H, Sengoku K. Male infertility and its genetic causes. J Obstet Gynaecol Res. 2015;41(10):1501–5.CrossRefGoogle Scholar
  5. 5.
    Reijo R, Lee TY, Salo P, Alagappan R, Brown LG, Rosenberg M, Rozen S, Jaffe T, Straus D, Hovatta O, de la Chapelle A. Diverse spermatogenic defects in humans caused by Y chromosome deletions encompassing a novel RNA–binding protein gene. Nat Genet. 1995;10(4):383.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nat Med. 2008;14(11):1197.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Elliott DJ, Millar MR, Oghene K, Ross A, Kiesewetter F, Pryor J, McIntyre M, Hargreave TB, Saunders PT, Vogt PH, Chandley AC. Expression of RBM in the nuclei of human germ cells is dependent on a critical region of the Y chromosome long arm. Proc Natl Acad Sci. 1997;94(8):3848–53.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Krausz C, Hoefsloot L, Simoni M, Tüttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology. 2014;2(1):5–19.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Suganthi R, Vijesh VV, Vandana N, Benazir JF. Y chromosomal microdeletion screening in the workup of male infertility and its current status in India. Int J Fertil Steril. 2014;7(4):253.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Miyamoto T, Hasuike S, Yogev L, Maduro MR, Ishikawa M, Westphal H, Lamb DJ. Azoospermia in patients heterozygous for a mutation in SYCP3. Lancet. 2003;362(9397):1714–9.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Yatsenko AN, Roy A, Chen R, Ma L, Murthy LJ, Yan W, Lamb DJ, Matzuk MM. Non-invasive genetic diagnosis of male infertility using spermatozoal RNA: KLHL10 mutations in oligozoospermic patients impair homodimerization. Hum Mol Genet. 2006;15(23):3411–9.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Xu X, Toselli PA, Russell LD, Seldin DC. Globozoospermia in mice lacking the casein kinase II α′ catalytic subunit. Nat Genet. 1999;23(1):118.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Kilani Z, Ismail R, Ghunaim S, Mohamed H, Hughes D, Brewis I, Barratt CL. Evaluation and treatment of familial globozoospermia in five brothers. Fertil Steril. 2004;82(5):1436–9.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kang-Decker N, Mantchev GT, Juneja SC, McNiven MA, van Deursen JM. Lack of acrosome formation in Hrb-deficient mice. Science. 2001;294(5546):1531–3.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Yao R, Ito C, Natsume Y, Sugitani Y, Yamanaka H, Kuretake S, Yanagida K, Sato A, Toshimori K, Noda T. Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci. 2002;99(17):11211–6.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Dam AH, Koscinski I, Kremer JA, Moutou C, Jaeger AS, Oudakker AR, Tournaye H, Charlet N, Lagier-Tourenne C, van Bokhoven H, Viville S. Homozygous mutation in SPATA16 is associated with male infertility in human globozoospermia. Am J Hum Genet. 2007;81(4):813–20.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Karaca N, Yilmaz R, Kanten GE, Kervancioglu E, Solakoglu S, Kervancioglu ME. First successful pregnancy in a globozoospermic patient having homozygous mutation in SPATA16. Fertil Steril. 2014;102(1):103–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Mou L, Wang Y, Li H, Huang Y, Jiang T, Huang W, Li Z, Chen J, Xie J, Liu Y, Jiang Z. A dominant-negative mutation of HSF2 associated with idiopathic azoospermia. Hum Genet. 2013;132(2):159–65.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Gupta N, Sudhakar DV, Gangwar PK, Sankhwar SN, Gupta NJ, Chakraborty B, Thangaraj K, Gupta G, Rajender S. Mutations in the prostate specific antigen (PSA/KLK3) correlate with male infertility. Sci Rep. 2017;7(1):11225.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ohta K, Yamamoto M, Lin Y, Hogg N, Akiyama H, Behringer RR, Yamazaki Y. Male differentiation of germ cells induced by embryonic age-specific Sertoli cells in mice. Biol Reprod. 2012;86(4):112.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Oakberg EF. Spermatogonial stem-cell renewal in the mouse. Anat Rec. 1971;169(3):515–31.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    De Rooij DG. Spermatogonial stem cell renewal in the mouse: I. Normal situation. Cell Proliferation. 1973;6(3):281–7.CrossRefGoogle Scholar
  23. 23.
    Elhija MA, Lunenfeld E, Schlatt S, Huleihel M. Differentiation of murine male germ cells to spermatozoa in a soft agar culture system. Asian J Androl. 2012;14(2):285.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Tagelenbosch RA, de Rooij DG. A quantitative study of spermatogonial multiplication and stem cell renewal in the C3H/101 F1 hybrid mouse. Mutat Res. 1993;290(2):193–200.CrossRefGoogle Scholar
  25. 25.
    Chen SR, Liu YX. Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling. Reproduction. 2015;149(4):R159–67.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Weber JE, Russell LD. A study of intercellular bridges during spermatogenesis in the rat. Am J Anat. 1987;180(1):1–24.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lacham-Kaplan O. In vivo and in vitro differentiation of male germ cells in the mouse. Reproduction. 2004;128(2):147–52.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Meng X, Lindahl M, Hyvönen ME, Parvinen M, de Rooij DG, Hess MW, Raatikainen-Ahokas A, Sainio K, Rauvala H, Lakso M, Pichel JG. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287(5457):1489–93.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Naughton CK, Jain S, Strickland AM, Gupta A, Milbrandt J. Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod. 2006;74(2):314–21.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Lee J, Kanatsu-Shinohara M, Inoue K, Ogonuki N, Miki H, Toyokuni S, Kimura T, Nakano T, Ogura A, Shinohara T. Akt mediates self-renewal division of mouse spermatogonial stem cells. Development. 2007;134(10):1853–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Oatley JM, Avarbock MR, Brinster RL. Glial cell line-derived neurotrophic factor regulation of genes essential for self-renewal of mouse spermatogonial stem cells is dependent on Src family kinase signaling. J Biol Chem. 2007;282(35):25842–51.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Braydich-Stolle L, Kostereva N, Dym M, Hofmann MC. Role of Src family kinases and N-Myc in spermatogonial stem cell proliferation. Dev Biol. 2007;304(1):34–45.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    He Z, Jiang J, Kokkinaki M, Golestaneh N, Hofmann MC, Dym M. Gdnf upregulates c-Fos transcription via the Ras/Erk1/2 pathway to promote mouse spermatogonial stem cell proliferation. Stem Cells. 2008;26(1):266–78.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ishii K, Kanatsu-Shinohara M, Toyokuni S, Shinohara T. FGF2 mediates mouse spermatogonial stem cell self-renewal via upregulation of Etv5 and Bcl6b through MAP2K1 activation. Development. 2012;139(10):1734–43.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Oatley JM, Avarbock MR, Telaranta AI, Fearon DT, Brinster RL. Identifying genes important for spermatogonial stem cell self-renewal and survival. Proc Natl Acad Sci. 2006;103(25):9524–9.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Ballow D, Meistrich ML, Matzuk M, Rajkovic A. Sohlh1 is essential for spermatogonial differentiation. Dev Biol. 2006;294(1):161–7.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Wu X, Goodyear SM, Tobias JW, Avarbock MR, Brinster RL. Spermatogonial stem cell self-renewal requires ETV5-mediated downstream activation of Brachyury in mice. Biol Reprod. 2011;85(6):1114–23.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Oatley MJ, Kaucher AV, Racicot KE, Oatley JM. Inhibitor of DNA binding 4 is expressed selectively by single spermatogonia in the male germline and regulates the self-renewal of spermatogonial stem cells in mice. Biol Reprod. 2011;85(2):347–56.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Sada A, Suzuki A, Suzuki H, Saga Y. The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science. 2009;325(5946):1394–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Buaas FW, Kirsh AL, Sharma M, McLean DJ, Morris JL, Griswold MD, de Rooij DG, Braun RE. Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet. 2004;36(6):647.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Filipponi D, Hobbs RM, Ottolenghi S, Rossi P, Jannini EA, Pandolfi PP, Dolci S. Repression of kit expression by Plzf in germ cells. Mol Cell Biol. 2007;27(19):6770–81.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Hobbs RM, Fagoonee S, Papa A, Webster K, Altruda F, Nishinakamura R, Chai L, Pandolfi PP. Functional antagonism between Sall4 and Plzf defines germline progenitors. Cell Stem Cell. 2012;10(3):284–98.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Lovasco LA, Gustafson EA, Seymour KA, Rooij DG, Freiman RN. TAF4b is required for mouse spermatogonial stem cell development. Stem Cells. 2015;33(4):1267–76.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Goertz MJ, Wu Z, Gallardo TD, Hamra FK, Castrillon DH. Foxo1 is required in mouse spermatogonial stem cells for their maintenance and the initiation of spermatogenesis. J Clin Invest. 2011;121(9):3456–66.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kanatsu-Shinohara M, Tanaka T, Ogonuki N, Ogura A, Morimoto H, Cheng PF, Eisenman RN, Trumpp A, Shinohara T. Myc/Mycn-mediated glycolysis enhances mouse spermatogonial stem cell self-renewal. Genes Dev. 2016;30(23):2637–48.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    van Pelt AM, de Rooij DG. Synchronization of the seminiferous epithelium after vitamin a replacement in vitamin A-deficient mice. Biol Reprod. 1990;43(3):363–7.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    van Pelt AM, de Rooij DG. Retinoic acid is able to reinitiate spermatogenesis in vitamin A-deficient rats and high replicate doses support the full development of spermatogenic cells. Endocrinology. 1991;128(2):697–704.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Gaemers IC, Van Pelt AM, Van der Saag PT, De Rooij DG. All-trans-4-oxo-retinoic acid: a potent inducer of in vivo proliferation of growth-arrested A spermatogonia in the vitamin A-deficient mouse testis. Endocrinology. 1996;137(2):479–85.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Gaemers IC, Sonneveld E, van Pelt AM, Schrans BH, Themmen AP, van der Saag PT, de Rooij DG. The effect of 9-cis-retinoic acid on proliferation and differentiation of a spermatogonia and retinoid receptor gene expression in the vitamin A-deficient mouse testis. Endocrinology. 1998;139(10):4269–76.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Tong MH, Yang QE, Davis JC, Griswold MD. Retinol dehydrogenase 10 is indispensible for spermatogenesis in juvenile males. Proc Natl Acad Sci. 2013;110(2):543–8.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Raverdeau M, Gely-Pernot A, Féret B, Dennefeld C, Benoit G, Davidson I, Chambon P, Mark M, Ghyselinck NB. Retinoic acid induces Sertoli cell paracrine signals for spermatogonia differentiation but cell autonomously drives spermatocyte meiosis. Proc Natl Acad Sci. 2012;109(41):16582–7.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Raverot G, Weiss J, Park SY, Hurley L, Jameson JL. Sox3 expression in undifferentiated spermatogonia is required for the progression of spermatogenesis. Dev Biol. 2005;283(1):215–25.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Toyoda S, Miyazaki T, Miyazaki S, Yoshimura T, Yamamoto M, Tashiro F, Yamato E, Miyazaki JI. Sohlh2 affects differentiation of KIT positive oocytes and spermatogonia. Dev Biol. 2009;325(1):238–48.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Laronda MM, Jameson JL. Sox3 functions in a cell-autonomous manner to regulate spermatogonial differentiation in mice. Endocrinology. 2011;152(4):1606–15.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Suzuki H, Ahn HW, Chu T, Bowden W, Gassei K, Orwig K, Rajkovic A. SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol. 2012;361(2):301–12.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hao J, Yamamoto M, Richardson TE, Chapman KM, Denard BS, Hammer RE, Zhao GQ, Hamra FK. Sohlh2 knockout mice are male-sterile because of degeneration of differentiating type A spermatogonia. Stem Cells. 2008;26(6):1587–97.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Endo T, Romer KA, Anderson EL, Baltus AE, de Rooij DG, Page DC. Periodic retinoic acid–STRA8 signaling intersects with periodic germ-cell competencies to regulate spermatogenesis. Proc Natl Acad Sci. 2015;112(18):E2347–56.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Schrans-Stassen BH, van de Kant HJ, de Rooij DG, van Pelt AM. Differential expression of c-kit in mouse undifferentiated and differentiating type A spermatogonia. Endocrinology. 1999;140(12):5894–900.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Beumer TL, Roepers-Gajadien HL, Gademan IS, Kal HB, de Rooij DG. Involvement of the D-type cyclins in germ cell proliferation and differentiation in the mouse. Biol Reprod. 2000;63(6):1893–8.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Gely-Pernot A, Raverdeau M, Teletin M, Vernet N, Féret B, Klopfenstein M, Dennefeld C, Davidson I, Benoit G, Mark M, Ghyselinck NB. Retinoic acid receptors control spermatogonia cell-fate and induce expression of the SALL4A transcription factor. PLoS Genet. 2015;11(10):e1005501.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Koshimizu U, Sawada K, Tajima Y, Watanabe D, Nishimune Y. White-spotting mutations affect the regenerative differentiation of testicular germ cells: demonstration by experimental cryptorchidism and its surgical reversal. Biol Reprod. 1991;45(4):642–8.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Sawada K, Sakamaki K, Nishimune Y. Effect of the W mutation, for white belly spot, on testicular germ cell differentiation in mice. Reproduction. 1991;93(2):287–94.CrossRefGoogle Scholar
  63. 63.
    Anderson EL, Baltus AE, Roepers-Gajadien HL, Hassold TJ, de Rooij DG, van Pelt AM, Page DC. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci. 2008;105(39):14976–80.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Page SL, Hawley RS. The genetics and molecular biology of the synaptonemal complex. Annu Rev Cell Dev Biol. 2004;20:525–58.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    de Vries FA, de Boer E, van den Bosch M, Baarends WM, Ooms M, Yuan L, Liu JG, van Zeeland AA, Heyting C, Pastink A. Mouse Sycp1 functions in synaptonemal complex assembly, meiotic recombination, and XY body formation. Genes Dev. 2005;19(11):1376–89.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kolas NK, Yuan L, Hoog C, Heng HH, Marcon E, Moens PB. Male mouse meiotic chromosome cores deficient in structural proteins SYCP3 and SYCP2 align by homology but fail to synapse and have possible impaired specificity of chromatin loop attachment. Cytogenet Genome Res. 2004;105(2–4):182–8.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Yang F, De La Fuente R, Leu NA, Baumann C, McLaughlin KJ, Wang PJ. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol. 2006;173(4):497–507.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Wojtasz L, Daniel K, Roig I, Bolcun-Filas E, Xu H, Boonsanay V, Eckmann CR, Cooke HJ, Jasin M, Keeney S, McKay MJ. Mouse HORMAD1 and HORMAD2, two conserved meiotic chromosomal proteins, are depleted from synapsed chromosome axes with the help of TRIP13 AAA-ATPase. PLoS Genet. 2009;5(10):e1000702.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fukuda T, Daniel K, Wojtasz L, Toth A, Höög C. A novel mammalian HORMA domain-containing protein, HORMAD1, preferentially associates with unsynapsed meiotic chromosomes. Exp Cell Res. 2010;316(2):158–71.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Shin YH, Choi Y, Erdin SU, Yatsenko SA, Kloc M, Yang F, Wang PJ, Meistrich ML, Rajkovic A. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS genetics. 2010;6(11):e1001190.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Daniel K, Lange J, Hached K, Fu J, Anastassiadis K, Roig I, Cooke HJ, Stewart AF, Wassmann K, Jasin M, Keeney S. Meiotic homologue alignment and its quality surveillance are controlled by mouse HORMAD1. Nat Cell Biol. 2011;13(5):599.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Wojtasz L, Cloutier JM, Baumann M, Daniel K, Varga J, Fu J, Anastassiadis K, Stewart AF, Reményi A, Turner JM, Tóth A. Meiotic DNA double-strand breaks and chromosome asynapsis in mice are monitored by distinct HORMAD2-independent and-dependent mechanisms. Genes Dev. 2012;26(9):958–73.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Royo H, Polikiewicz G, Mahadevaiah SK, Prosser H, Mitchell M, Bradley A, de Rooij DG, Burgoyne PS, Turner JM. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol. 2010;20(23):2117–23.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Turner JM. Meiotic silencing in mammals. Annu Rev Genet. 2015;49:395–412.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Burgoyne PS, Mahadevaiah SK, Turner JM. The consequences of asynapsis for mammalian meiosis. Nat Rev Genet. 2009;10(3):207.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Jan SZ, Hamer G, Repping S, de Rooij DG, van Pelt AM, Vormer TL. Molecular control of rodent spermatogenesis. Biochim Biophys Acta. 2012;1822(12):1838–50.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    ElInati E, Russell HR, Ojarikre OA, Sangrithi M, Hirota T, De Rooij DG, McKinnon PJ, Turner JM. DNA damage response protein TOPBP1 regulates X chromosome silencing in the mammalian germ line. Proc Natl Acad Sci. 2017;114(47):12536–41.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Marcon E, Moens PB. The evolution of meiosis: recruitment and modification of somatic DNA-repair proteins. BioEssays. 2005;27(8):795–808.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Sanderson ML, Hassold TJ, Carrell DT. Proteins involved in meiotic recombination: a role in male infertility? Syst Biol Reprod Med. 2008;54(2):57–74.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Handel MA, Schimenti JC. Genetics of mammalian meiosis: regulation, dynamics and impact on fertility. Nat Rev Genet. 2010;11(2):124.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    MacQueen AJ, Hochwagen A. Checkpoint mechanisms: the puppet masters of meiotic prophase. Trends Cell Biol. 2011;21(7):393–400.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Kierszenbaum AL, Rivkin E, Tres LL, Duan C, Goldberg E, Szot M, Grigoriev V, Mahadevaiah SK, Ojarikre OA, Touré A, von Glasenapp E. Specific arrests of spermatogenesis in genetically modified and mutant mice. Cytogenet Genome Res. 2003;103(3–4):267–76.Google Scholar
  83. 83.
    Barchi M, Mahadevaiah S, Di Giacomo M, Baudat F, de Rooij DG, Burgoyne PS, Jasin M, Keeney S. Surveillance of different recombination defects in mouse spermatocytes yields distinct responses despite elimination at an identical developmental stage. Mol Cell Biol. 2005;25(16):7203–15.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Barlow C, Liyanage M, Moens PB, Tarsounas M, Nagashima K, Brown K, Rottinghaus S, Jackson SP, Tagle D, Ried T, Wynshaw-Boris A. Atm deficiency results in severe meiotic disruption as early as leptonema of prophase I. Development. 1998;125(20):4007–17.PubMedPubMedCentralGoogle Scholar
  85. 85.
    Hamer G, Kal HB, Westphal CH, Ashley T, de Rooij DG. Ataxia telangiectasia mutated expression and activation in the testis. Biol Reprod. 2004;70(4):1206–12.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Pittman DL, Cobb J, Schimenti KJ, Wilson LA, Cooper DM, Brignull E, Handel MA, Schimenti JC. Meiotic prophase arrest with failure of chromosome synapsis in mice deficient for Dmc1, a germline-specific RecA homolog. Mol Cell. 1998;1(5):697–705.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Baudat F, Manova K, Yuen JP, Jasin M, Keeney S. Chromosome synapsis defects and sexually dimorphic meiotic progression in mice lacking Spo11. Mol Cell. 2000;6(5):989–98.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    de Vries SS, Baart EB, Dekker M, Siezen A, de Rooij DG, de Boer P, te Riele H. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 1999;13(5):523–31.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Revenkova E, Eijpe M, Heyting C, Hodges CA, Hunt PA, Liebe B, Scherthan H, Jessberger R. Cohesin SMC1β is required for meiotic chromosome dynamics, sister chromatid cohesion and DNA recombination. Nat Cell Biol. 2004;6(6):555.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Hamer G, Novak I, Kouznetsova A, Höög C. Disruption of pairing and synapsis of chromosomes causes stage-specific apoptosis of male meiotic cells. Theriogenology. 2008;69(3):333–9.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Fawcett DW. The mammalian spermatozoon. Dev Biol. 1975;44(2):394–436.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Escalier D. Knockout mouse models of sperm flagellum anomalies. Hum Reprod Update. 2006;12(4):449–61.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kazarian E, Son H, Sapao P, Li W, Zhang Z, Strauss J III, Teves M. SPAG17 is required for male germ cell differentiation and fertility. Int J Mol Sci. 2018;19(4):1252.PubMedCentralCrossRefGoogle Scholar
  94. 94.
    Feng CW, Spiller C, Merriner DJ, O’Bryan MK, Bowles J, Koopman P. SOX30 is required for male fertility in mice. Sci Rep. 2017;7(1):17619.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Johnson DR, Hunt DM. Hop-sterile, a mutant gene affecting sperm tail development in the mouse. Development. 1971;25(2):223–36.Google Scholar
  96. 96.
    Sapiro R, Kostetskii I, Olds-Clarke P, Gerton GL, Radice GL, Strauss III JF. Male infertility, impaired sperm motility, and hydrocephalus in mice deficient in sperm-associated antigen 6. Mol Cell Biol. 2002;22(17):6298–305.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Tanaka H, Iguchi N, Toyama Y, Kitamura K, Takahashi T, Kaseda K, Maekawa M, Nishimune Y. Mice deficient in the axonemal protein Tektin-t exhibit male infertility and immotile-cilium syndrome due to impaired inner arm dynein function. Mol Cell Biol. 2004;24(18):7958–64.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Kierszenbaum AL, Tres LL. The acrosome-acroplaxome-manchette complex and the shaping of the spermatid head. Arch Histol Cytol. 2004;67(4):271–84.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Mochida K, Tres LL, Kierszenbaum AL. Structural and biochemical features of fractionated spermatid manchettes and sperm axonemes of the azh/azh mutant mouse. Mol Reprod Dev. 1999;52(4):434–44.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Kierszenbaum AL, Rivkin E, Tres LL, Yoder BK, Haycraft CJ, Bornens M, Rios RM. GMAP210 and IFT88 are present in the spermatid golgi apparatus and participate in the development of the acrosome–acroplaxome complex, head–tail coupling apparatus and tail. Dev Dyn. 2011;240(3):723–36.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Liu Y, DeBoer K, de Kretser DM, O’Donnell L, O’Connor AE, Merriner DJ, Okuda H, Whittle B, Jans DA, Efthymiadis A, McLachlan RI. LRGUK-1 is required for basal body and manchette function during spermatogenesis and male fertility. PLoS Genet. 2015;11(3):e1005090.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Okuda H, DeBoer K, O’Connor AE, Merriner DJ, Jamsai D, O’Bryan MK. LRGUK1 is part of a multiprotein complex required for manchette function and male fertility. FASEB J. 2016;31(3):1141–52.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Zheng H, Stratton CJ, Morozumi K, Jin J, Yanagimachi R, Yan W. Lack of Spem1 causes aberrant cytoplasm removal, sperm deformation, and male infertility. Proc Natl Acad Sci. 2007;104(16):6852–7.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Geyer CB, Inselman AL, Sunman JA, Bornstein S, Handel MA, Eddy EM. A missense mutation in the Capza3 gene and disruption of F-actin organization in spermatids of repro32 infertile male mice. Dev Biol. 2009;330(1):142–52.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Meistrich ML, Mohapatra B, Shirley CR, Zhao M. Roles of transition nuclear proteins in spermiogenesis. Chromosoma. 2003;111(8):483–8.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Spiridonov NA, Wong L, Zerfas PM, Starost MF, Pack SD, Paweletz CP, Johnson GR. Identification and characterization of SSTK, a serine/threonine protein kinase essential for male fertility. Mol Cell Biol. 2005;25(10):4250–61.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Nair M, Nagamori I, Sun P, Mishra DP, Rhéaume C, Li B, Sassone-Corsi P, Dai X. Nuclear regulator Pygo2 controls spermiogenesis and histone H3 acetylation. Dev Biol. 2008;320(2):446–55.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Meistrich ML, Trostle-Weige PK, Lin R, Allis CD, Bhatnagar YM. Highly acetylated H4 is associated with histone displacement in rat spermatids. Mol Reprod Dev. 1992;31(3):170–81.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S. From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J. 2010;277(3):599–604.PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Nantel F, Sassone-Corsi P. CREM: a transcriptional master switch during the spermatogenesis differentiation program. Front Biosci. 1996;1:d266–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Zhang D, Penttila TL, Morris PL, Teichmann M, Roeder RG. Spermiogenesis deficiency in mice lacking the Trf2 gene. Science. 2001;292(5519):1153–5.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Wu JY, Ribar TJ, Cummings DE, Burton KA, McKnight GS, Means AR. Spermiogenesis and exchange of basic nuclear proteins are impaired in male germ cells lacking Camk4. Nat Genet. 2000;25(4):448.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Li W, Wu J, Kim SY, Zhao M, Hearn SA, Zhang MQ, Meistrich ML, Mills AA. Chd5 orchestrates chromatin remodelling during sperm development. Nat Commun. 2014;5:3812.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Moretti C, Serrentino ME, Ialy-Radio C, Delessard M, Soboleva TA, Tores F, Leduc M, Nitschké P, Drevet JR, Tremethick DJ, Vaiman D. SLY regulates genes involved in chromatin remodeling and interacts with TBL1XR1 during sperm differentiation. Cell Death Differ. 2017;24(6):1029.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Coutton C, Vargas AS, Amiri-Yekta A, Kherraf ZE, Mustapha SF, Tanno P, Wambergue-Legrand C, Karaouzène T, Martinez G, Crouzy S, Daneshipour A. Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nat Commun. 2018;9(1):686.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Arafat M, Har-Vardi I, Harlev A, Levitas E, Zeadna A, Abofoul-Azab M, Dyomin V, Sheffield VC, Lunenfeld E, Huleihel M, Parvari R. Mutation in TDRD9 causes non-obstructive azoospermia in infertile men. J Med Genet. 2017;54(9):633–9.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Division of EndocrinologyCSIR-Central Drug Research InstituteLucknowIndia

Personalised recommendations