Endocrine Genetic Defects

  • Joseph Thomas Mahon
  • Nicholas N. Tadros


Nearly 15% of all couples will struggle with infertility. The role of the clinician is to not only evaluate and treat potentially correctable etiologies of infertility but also to discover and educate the couple on any potential genetic factors at play. After completion of the human genome sequencing (International Human Genome Sequencing Consortium, 2001), the genetic basis of human reproduction began to take shape. The process of spermatogenesis relies on a complex hormonal interplay between the hypothalamus, pituitary, and testis to influence testicular function. Due to these complex interactions, there can be numerous problems in the hormonal support of male fertility due to genetic defects. These defects may lead to alterations in the hormonal milieu necessary for successful spermatogenesis by disrupting upstream signaling hormones such as gonadotropin releasing hormone (GNRH), luteinizing hormone (LH), and/or follicle-stimulating hormone (FSH). Alternatively, chromosomal defects may affect the testicular microenvironment, thereby impeding testicular function.

Historically, etiologies of female-centric infertility have dominated the literature; however, increasing attention has been given to male-centric infertility. As assisted reproductive technology (ART) continue to become more refined and sophisticated; the evaluation of testicular function and sperm quality has gained significant attention.

In this chapter, we will examine the defined genetic defects affecting these upstream signaling hormones, as well as those influencing the testicular microenvironment. In addition, associated syndromic entities will also be discussed.


Spermatogenesis Testosterone Gonadotropins Chromosomal structural anomalies 


  1. 1.
    World Health Organization (WHO). Infertility: a tabulation of available data on prevalence of primary and secondary infertility. Geneva: WHO; 1991.Google Scholar
  2. 2.
    Clarke IJ. Hypothalamus as an endocrine organ. Compr Physiol. 2015;5(1):217–53.PubMedGoogle Scholar
  3. 3.
    Prader A, Labhart A, Willi H, Fanconi G. Ein Syndrom von Adipositas, Kleinwuchs, Kryptorchismus und Idiotie bei Kindern und Erwachsenen, die als Neugeborene ein myotonieartiges Bild geboten haben. Copenhagen: VIII International Congress of Paediatrics; 1956.Google Scholar
  4. 4.
    Cassidy SB. Prader-Willi syndrome. J Med Genet. 1997;34:917.CrossRefGoogle Scholar
  5. 5.
    Vogels A, Van Den EJ, Keymolen K, et al. Minimum prevalence, birth incidence and cause of death for Prader-Willi syndrome in Flanders. Eur J Hum Genet. 2004;12:238.CrossRefGoogle Scholar
  6. 6.
    Buiting K, Saitoh S, Gross S, et al. Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet. 1995;9:395.CrossRefGoogle Scholar
  7. 7.
    Butler MG, Kimonis V, Dykens E, Gold JA, Miller J, Ramura R, Driscoll DJ. Prader-Willi syndrome and early-onset morbid obesity NIH rare disease consortium: a review of natural history study. Am J Med Genet A. 2018;176(2):368–75.CrossRefGoogle Scholar
  8. 8.
    Katcher ML, Bargman GJ, Gilbert EF, Opitz JM. Absence of spermatogonia in the Prader-Willi syndrome. Eur J Pediatr. 1977;124:257.CrossRefGoogle Scholar
  9. 9.
    Uehling D. Cryptorchidism in the Prader-Willi syndrome. J Urol. 1980;124:103.CrossRefGoogle Scholar
  10. 10.
    Wannarachue N, Ruvalcaba RH. Hypogonadism in Prader-Willi syndrome. Am J Ment Defic. 1975;79:592.PubMedGoogle Scholar
  11. 11.
    Vogels A, Moerman P, Frigins JP, et al. Testicular histology in boys with Prader-Willi syndrome: fertile or infertile? J Urol. 2008;180(4):1800–4.CrossRefGoogle Scholar
  12. 12.
    Weiss J, Axelrod L, Whitcomb TW, et al. Hypogonadism caused by a single amino acid substitution in the beta subunit of luteinizing hormone. N Engl J Med. 1992;326(3):179–83.CrossRefGoogle Scholar
  13. 13.
    Valdes-Socin H, Salvi R, Daly AF, et al. Hypogonadism in a patient with mutation in the luteinizing hormone beta-subunit gene. N Engl J Med. 2004;351(25):2619–25.CrossRefGoogle Scholar
  14. 14.
    Jarow JP, Wright WW, Brown TR, et al. Bioactivity of androgens within the testes and serum of normal men. J Androl. 2005;26:343–8.CrossRefGoogle Scholar
  15. 15.
    Jarow JP, Zirkin BR. The androgen microenvironment of the human testis and hormonal control of spermatogenesis. Ann N Y Acad Sci. 2005;1061:208–20.CrossRefGoogle Scholar
  16. 16.
    Sokol RZ. Endocrine evaluation. In: Lipshultz LI, Howards SS, Niederberger CS, editors. Infertility in the male. 4th ed. New York: Cambridge University Press; 2009. p. 199–214.CrossRefGoogle Scholar
  17. 17.
    Lofrano-Porto A, Barra GB, da Rocha Neves Fde A. Luteinizing hormone beta mutation and hypogonadism in men and women. N Engl J Med. 2007;357(9):897–904.CrossRefGoogle Scholar
  18. 18.
    Valdes-Socin H, Salvi R, Thiry A, et al. Testicular effects of isolated luteinizing hormone deficiency and reversal by long-term human chorionic gonadotropin treatment. J Clin Endocrinol Metab. 2009;94(1):3–4.CrossRefGoogle Scholar
  19. 19.
    Berger K, Souza H, Brito VN, et al. Clinical and hormonal features of selective follicle-stimulating hormone (FSH) deficiency due to FSH beta-subunit gene mutations in both sexes. Fertil Steril. 2005;83(2):466–70.CrossRefGoogle Scholar
  20. 20.
    Lindstedt G, Nystrom E, Matthews C, et al. Follitropin (FSH) deficiency in an infertile male due to FSHbeta gene mutation. A syndrome of normal puberty and virilization but underdeveloped testicles with azoospermia, low FSH but high lutropin and normal serum testosterone concentrations. Clin Chem Lab Med. 1998;36:663–5.CrossRefGoogle Scholar
  21. 21.
    Simsek E, Montenegro LR, Binay C, et al. Clinical and hormonal features of a male adolescent with congenital isolated Follicle-Stimulating hormone deficiency. Horm Res Paediat. 2016;85:207–12.CrossRefGoogle Scholar
  22. 22.
    Balasubramanian R, Crowley WF Jr. Isolated Gonadotropin-Releasing Hormone (GnRH) Deficiency. 2007 May 23 [Updated 2017 Mar 2]. In: Adam MP, Ardinger HH, Pagon RA, et al., editors. GeneReviews® [Internet]. Seattle, WA: University of Washington; 1993–2018.Google Scholar
  23. 23.
    Beate K, Joseph N, Nicolas d R, Wolfram K. Genetics of isolated hypogonadotropic hypogonadism: role of GnRH receptor and other genes. Int J Endocrinol. 2012;2012:147893.CrossRefGoogle Scholar
  24. 24.
    Dode C, Teixeira L, Levilliers J, et al. Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet. 2006;2(10):e175.CrossRefGoogle Scholar
  25. 25.
    Martin C, Balasubramanian R, Dwyer AA, et al. The role of the prokineticin 2 pathway in human reproduction: evidence from the study of human and murine gene mutations. Endocr Rev. 2011;32(2):225–46.CrossRefGoogle Scholar
  26. 26.
    Pitteloud N, Zhang C, Pignatelli D, et al. Loss-of-function mutation in the prokineticin 2 gene causes Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism. Proc Natl Acad Sci U S A. 2007;104(44):17447–52.CrossRefGoogle Scholar
  27. 27.
    Cole LW, Sidis Y, Zhang C, et al. Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin- releasing hormone deficiency: molecular genetics and clinical spectrum. J Clin Endocrinol Metab. 2008;93(9):3551–9.CrossRefGoogle Scholar
  28. 28.
    Kim HG, Kurth I, Lan F, et al. Mutations in CHD7, encoding a chromatin-remodeling protein, cause idiopathic hypogonadotropic hypogonadism and Kallmann syndrome. Am J Hum Genet. 2008;83(4):511–9.CrossRefGoogle Scholar
  29. 29.
    Semple RK, Achermann JC, Ellery J, et al. Two novel missense mutations in G protein-coupled receptor 54 in a patient with hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 2005;90(3):1849–55.CrossRefGoogle Scholar
  30. 30.
    Pallais JC, Bo-Abbas Y, Pitteloud N, Crowley WF, Seminara SB. Neuroendocrine, gonadal, placental, and obstetric phenotypes in patients with IHH and mutations in the G- protein coupled receptor, GPR54. Mol Cell Endocrinol. 2006;254–255:70–7.CrossRefGoogle Scholar
  31. 31.
    Nimri R, Lebenthal Y, Lazar L, et al. A novel loss-of-function mutation in GPR54/KISS1R leads to hypogonadotropic hypogonadism in a highly consanguineous family. J Clin Endocrinol Metab. 2011;96(3):E536–45.CrossRefGoogle Scholar
  32. 32.
    Sidhoum VF, Chan YM, Lippincott MF, Balasubramanian R, Quinton R, Plummer L, Dwyer A, Pitteloud N, Hayes FJ, Hall JE, Martin KA, Boepple PA, Seminara SB. Reversal and relapse of hypogonadotropic hypogonadism: resilience and fragility of the reproductive neuroendocrine system. J Clin Endocrinol Metab. 2014;99:861–70.CrossRefGoogle Scholar
  33. 33.
    Maestre de San Juan A. Falta total de los nerviosolfactorios con anosmia en un individuo en quien existia una atrofia congenita de los testiculos y miembro viril. Siglo Med. 1856;131:211.Google Scholar
  34. 34.
    Kallmann FJ, Schoenfeld WA, Barrera SE. The genetic aspects of primary eunuchoidism. Am J Ment Defic. 1944;158:203–36.Google Scholar
  35. 35.
    Schwanzel-Fukuda M, Pfaff DW. Origin of luteinizing hormone-releasing hormone neurons. Nature. 1989;338(6211):161–4.CrossRefGoogle Scholar
  36. 36.
    Tordjman KM, Yaron M, Berkovitz A, et al. Fertility after high-dose testosterone and intracytoplasmic sperm injection in a patient with androgen insensitivity syndrome with a previously unreported androgen receptor mutation. Andrologia. 2014;46(6):703–6.CrossRefGoogle Scholar
  37. 37.
    Lemos MC, Thakker RV. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat. 2008;29:22–32.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Joseph Thomas Mahon
    • 1
  • Nicholas N. Tadros
    • 2
  1. 1.Genitourinary Reconstruction & Men’s Pelvic Health, Department of Urology, Loyola University Medical CenterMaywoodUSA
  2. 2.Department of UrologySouthern Illinois University School of MedicineSpringfieldUSA

Personalised recommendations