Disorders of Sex Determination

  • Ibrahim A. Abdel-Hamid
  • Ezzat S. Elsobky
  • Moustafa A. Elsaied


Human sex determination refers to the processes by which an embryo becomes either a male or a female during development. Advances in developmental and cell biology, molecular genetics, and experimental embryology have greatly helped us to clarify problems of sexual determination and differentiation. The steps of formation of the testes are dependent on a series of Y-linked, X-linked, and autosomal gene actions and interactions. The discovery of the SRY gene (sex-determining region of Y chromosome) in 1990 triggered a revolution in our understanding of sex determination. SRY has a fundamental role in sex determination and is believed to be the switch that initiates testis development from the bipotential gonads. This discovery was followed by a description of several new genes and pathways associated with human errors of sex determination or disorders of sex development (DSD). These new genes allow for rapid diagnosis, understanding of the pathophysiology, and prediction of future fertility. There is strong scientific evidence that sex determination requires a delicate dosage balance in the timing and levels of expression of these genes. Thus, anomalies may occur at any stage of intrauterine development. Failure of normal sex determination covers a wide spectrum of disorders, ranging from complete masculinization to true hermaphrodites (ovotesticular DSD). We hereby present a 33-year-old patient who had a small testicular size, hypergonadotropic hypogonadism, and nonobstructive azoospermia. Herein, we focus on the approaches to diagnosis and the lessons learned and review shortly the genetics of human sex determination.


Azoospermia Sex determination 46, XX testicular disorder of sex development XX male syndrome Testis Small testicular size 


  1. 1.
    Hiort O. The differential role of androgens in early human sex development. BMC Med. 2013;11:152.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Ohnesorg T, Vilain E, Sinclair AH. The genetics of disorders of sex development in humans. Sex Dev. 2014;8(5):262–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Eid W, Biason-Lauber A. Why boys will be boys and girls will be girls: human sex development and its defects. Birth Defects Res C Embryo Today. 2016;108(4):365–79.PubMedGoogle Scholar
  4. 4.
    Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN. A gene from the human sex-determining region encodes a protein with homology to a conserved DNA-binding motif. Nature. 1990;346(6281):240–4.PubMedCrossRefGoogle Scholar
  5. 5.
    Sekido R. SRY: a transcriptional activator of mammalian testis determination. Int J Biochem Cell Biol. 2010;42(3):417–20.PubMedCrossRefGoogle Scholar
  6. 6.
    Li Y, Zheng M, Lau YF. The sex-determining factors SRY and SOX9 regulate similar target genes and promote testis cord formation during testicular differentiation. Cell Rep. 2014;8(3):723–33.PubMedCrossRefGoogle Scholar
  7. 7.
    She ZY, Yang WX. Sry and SoxE genes: how they participate in mammalian sex determination and gonadal development? Semin Cell Dev Biol. 2017;63:13–22.PubMedCrossRefGoogle Scholar
  8. 8.
    Graves JA. In retrospect: Twenty-five years of the sex-determining gene. Nature. 2015;528(7582):343–4.PubMedCrossRefGoogle Scholar
  9. 9.
    Barsoum I, Yao HH. The road to maleness: from testis to Wolffian duct. Trends Endocrinol Metab. 2006;17(6):223–8.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Shaw G, Renfree MB. Wolffian duct development. Sex Dev. 2014;8(5):273–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Hughes IA, Houk C, Ahmed SF, Lee PA. Consensus statement on management of intersex disorders. Arch Dis Child. 2006;91(7):554–63.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lee PA, Nordenström A, Houk CP, Ahmed SF, Auchus R, Baratz A, Baratz Dalke K, Liao LM, Lin-Su K, Looijenga LH 3rd, Mazur T, Meyer-Bahlburg HF, Mouriquand P, Quigley CA, Sandberg DE, Vilain E, Witchel S. Global DSD update consortium. Global disorders of sex development update since 2006: perceptions, approach and care. Horm Res Paediatr. 2016;85(3):158–80.PubMedCrossRefGoogle Scholar
  13. 13.
    Ono M, Harley VR. Disorders of sex development: new genes, new concepts. Nat Rev Endocrinol. 2013;9(2):79–91.PubMedCrossRefGoogle Scholar
  14. 14.
    Gudeloglu A, Parekattil SJ. Update in the evaluation of the azoospermic male. Clinics (Sao Paulo). 2013;68(Suppl 1):27–34.CrossRefGoogle Scholar
  15. 15.
    Desroches B, Kohn TP, Welliver C, Pastuszak AW. Testosterone therapy in the new era of Food and Drug Administration oversight. Transl Androl Urol. 2016;5(2):207–12.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Bojesen A, Hertz JM, Gravholt CH. Genotype and phenotype in Klinefelter syndrome – impact of androgen receptor polymorphism and skewed X inactivation. Int J Androl. 2011;34(6 Pt 2):e642–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Abdel-Razic MM, Abdel-Hamid IA, Elsobky E, El-Dahtory F. Further evidence of the clinical, hormonal, and genetic heterogeneity of Klinefelter syndrome: a study of 216 infertile Egyptian patients. J Androl. 2012;33(3):441–8.PubMedCrossRefGoogle Scholar
  18. 18.
    de la Chapelle A. Analytic review: nature and origin of males with XX sex chromosomes. Am J Hum Genet. 1972;24(1):71–105.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Rajender S, Rajani V, Gupta NJ, Chakravarty B, Singh L, Thangaraj K. SRY-negative 46,XX male with normal genitals, complete masculinization and infertility. Mol Hum Reprod. 2006;12(5):341–6.PubMedCrossRefGoogle Scholar
  20. 20.
    Bashamboo A, Eozenou C, Rojo S, McElreavey K. Anomalies in human sex determination provide unique insights into the complex genetic interactions of early gonad development. Clin Genet. 2017;91(2):143–56.PubMedCrossRefGoogle Scholar
  21. 21.
    Del Valle I, Buonocore F, Duncan AJ, Lin L, Barenco M, Parnaik R, Shah S, Hubank M, Gerrelli D, Achermann JC. A genomic atlas of human adrenal and gonad development. Wellcome Open Res. 2017;2:25.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mamsen LS, Ernst EH, Borup R, Larsen A, Olesen RH, Ernst E, Anderson RA, Kristensen SG, Andersen CY. Temporal expression pattern of genes during the period of sex differentiation in human embryonic gonads. Sci Rep. 2017;7(1):15961.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Biason-Lauber A. Human sex development: from basic science to clinical practice and Back. Pediatr Endocrinol Rev. 2017;15(1):8–20.PubMedGoogle Scholar
  24. 24.
    Ortega EA, Salvador Q, Fernandez M, Ward MA. Alterations of sex determination pathway in the genital ridges of males with limited Y chromosome genes. Biol Reprod. 2018;100(3):810. Scholar
  25. 25.
    Tachibana M. Epigenetic regulation of mammalian sex determination. J Med Investig. 2015;62(1–2):19–23.CrossRefGoogle Scholar
  26. 26.
    Gunes SO, Metin Mahmutoglu A, Agarwal A. Genetic and epigenetic effects in sex determination. Birth Defects Res C Embryo Today. 2016;108(4):321–36.PubMedGoogle Scholar
  27. 27.
    Kuroki S, Tachibana M. Epigenetic regulation of mammalian sex determination. Mol Cell Endocrinol. 2018;468:31–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Sekido R, Lovell-Badge R. Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature. 2008;453(7197):930–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Barrionuevo F, Scherer G. SOX E genes: SOX9 and SOX8 in mammalian testis development. Int J Biochem Cell Biol. 2010;42(3):433–6.PubMedCrossRefGoogle Scholar
  30. 30.
    Biason-Lauber A. WNT4, RSPO1, and FOXL2 in sex development. Semin Reprod Med. 2012;30(5):387–95.PubMedCrossRefGoogle Scholar
  31. 31.
    Elzaiat M, Todeschini AL, Caburet S, Veitia RA. The genetic make-up of ovarian development and function: the focus on the transcription factor FOXL2. Clin Genet. 2017;91(2):173–82.PubMedCrossRefGoogle Scholar
  32. 32.
    Gao X, Chen G, Huang J, Bai Q, Zhao N, Shao M, Jiao L, Wei Y, Chang L, Li D, Yang L. Clinical, cytogenetic, and molecular analysis with 46,XX male sex reversal syndrome: case reports. J Assist Reprod Genet. 2013;30(3):431–5.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Lee GM, Ko JM, Shin CH, Yang SW. A Korean boy with 46,XX testicular disorder of sex development caused by SOX9 duplication. Ann Pediatr Endocrinol Metab. 2014;19(2):108–12.PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Xiao B, Ji X, Xing Y, Chen YW, Tao J. A rare case of 46, XX SRY-negative male with approximately 74-kb duplication in a region upstream of SOX9. Eur J Med Genet. 2013;56(12):695–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Boucekkine C, Toublanc JE, Abbas N, Chaabouni S, Ouahid S, Semrouni M, Jaubert F, Toublanc M, McElreavey K, Vilain E. Clinical and anatomical spectrum in XX sex reversed patients. Relationship to the presence of Y specific DNA-sequences. Clin Endocrinol. 1994;40:733–42.CrossRefGoogle Scholar
  36. 36.
    Li TF, Wu QY, Zhang C, Li WW, Zhou Q, Jiang WJ, Cui YX, Xia XY, Shi YC. 46,XX testicular disorder of sexual development with SRY-negative caused by some unidentified mechanisms: a case report and review of the literature. BMC Urol. 2014;14:104.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Majzoub A, Arafa M, Starks C, Elbardisi H, Al Said S, Sabanegh E. 46 XX karyotype during male fertility evaluation; case series and literature review. Asian J Androl. 2017;19(2):168–72.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Ergun-Longmire B, Vinci G, Alonso L, Matthew S, Tansil S, Lin-Su K, McElreavey K, New MI. Clinical, hormonal and cytogenetic evaluation of 46,XX males and review of the literature. J Pediatr Endocrinol Metab. 2005;18(8):739–48.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Minor A, Mohammed F, Farouk A, Hatakeyama C, Johnson K, Chow V, Ma S. Genetic characterization of two 46, XX males without gonadal ambiguities. J Assist Reprod Genet. 2008;25(11–12):547–52.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Wosnitzer MS. Genetic evaluation of male infertility. Transl Androl Urol. 2014;3(1):17–26.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Ahmed SF, Achermann JC, Arlt W, Balen A, Conway G, Edwards Z, Elford S, Hughes IA, Izatt L, Krone N, Miles H, O'Toole S, Perry L, Sanders C, Simmonds M, Watt A, Willis D. Society for Endocrinology UK guidance on the initial evaluation of an infant or an adolescent with a suspected disorder of sex development (revised 2015). Clin Endocrinol. 2016;84(5):771–88.CrossRefGoogle Scholar
  42. 42.
    Guerrero-Fernández J, Azcona San Julián C, Barreiro Conde J, Bermúdez de la Vega JA, Carcavilla Urquí A, Castaño González LA, Martos Tello JM, Rodríguez Estévez A, Yeste Fernández D, Martínez Martínez L, Martínez-Urrutia MJ, Mora Palma C, Audí Parera L. Management guidelines for disorders/different sex development (DSD). An Pediatr (Barc). 2018;89(5):315.e1–315.e19.CrossRefGoogle Scholar
  43. 43.
    Piard J, Mignot B, Arbez-Gindre F, Aubert D, Morel Y, Roze V, McElreavy K, Jonveaux P, Valduga M, Van Maldergem L. Severe sex differentiation disorder in a boy with a 3.8 Mb 10q25.3-q26.12 microdeletion encompassing EMX2. Am J Med Genet A. 2014;164A(10):2618–22.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang X, Zhang X, Liu S, Li G, Cui L, Qin Y, Chen ZJ. Novel mutations in the TP63 gene are potentially associated with Müllerian duct anomalies. Hum Reprod. 2016;31(12):2865–71.PubMedCrossRefGoogle Scholar
  45. 45.
    Robevska G, van den Bergen JA, Ohnesorg T, Eggers S, Hanna C, Hersmus R, Thompson EM, Baxendale A, Verge CF, Lafferty AR, Marzuki NS, Santosa A, Listyasari NA, Riedl S, Warne G, Looijenga L, Faradz S, Ayers KL, Sinclair AH. Functional characterization of novel NR5A1 variants reveals multiple complex roles in disorders of sex development. Hum Mutat. 2018;39(1):124–39.PubMedCrossRefGoogle Scholar
  46. 46.
    Hussain S, Amar A, Najeeb MN, Khaliq S. Two novel mutations in the NR5A1 gene as a cause of disorders of sex development in a Pakistani cohort of 46,XY patients. Andrologia. 2016;48(5):509–17.PubMedCrossRefGoogle Scholar
  47. 47.
    Fabbri HC, de Andrade JG, Soardi FC, de Calais FL, Petroli RJ, Maciel-Guerra AT, Guerra-Júnior G, de Mello MP. The novel p.Cys65Tyr mutation in NR5A1 gene in three 46,XY siblings with normal testosterone levels and their mother with primary ovarian insufficiency. BMC Med Genet. 2014;15:7.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Lourenço D, Brauner R, Lin L, De Perdigo A, Weryha G, Muresan M, Boudjenah R, Guerra-Junior G, Maciel-Guerra AT, Achermann JC, McElreavey K, Bashamboo A. Mutations in NR5A1 associated with ovarian insufficiency. N Engl J Med. 2009;360(12):1200–10.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Gomes NL, de Paula LCP, Silva JM, Silva TE, Lerário AM, Nishi MY, Batista RL, Júnior JA, Moraes D, Costa EMF, Hemesath TP, Guaragna G, Leite JCL, Carvalho CG, Domenice S, Costa EC, Mendonca BB. A 46,XX testicular disorder of sex development caused by a Wilms’ Tumour Factor-1 (WT1) pathogenic variant. Clin Genet. 2018;95:172. Scholar
  50. 50.
    Guaragna MS, Lutaif AC, Bittencourt VB, Piveta CS, Soardi FC, Castro LC, Belangero VM, Maciel-Guerra AT, Guerra-Junior G, Mello MP. Frasier syndrome: four new cases with unusual presentations. Arq Bras Endocrinol Metabol. 2012;56(8):525–32.PubMedCrossRefGoogle Scholar
  51. 51.
    Bashamboo A, Brauner R, Bignon-Topalovic J, Lortat-Jacob S, Karageorgou V, Lourenco D, Guffanti A, McElreavey K. Mutations in the FOG2/ZFPM2 gene are associated with anomalies of human testis determination. Hum Mol Genet. 2014;23(14):3657–65.PubMedCrossRefGoogle Scholar
  52. 52.
    Martinez de LaPiscina I, de Mingo C, Riedl S, Rodriguez A, Pandey AV, Fernández-Cancio M, Camats N, Sinclair A, Castaño L, Audi L, Flück CE. GATA4 variants in individuals with a 46,XY Disorder of Sex Development (DSD) may or may not be associated with cardiac defects depending on second hits in other DSD genes. Front Endocrinol (Lausanne). 2018;9:142.CrossRefGoogle Scholar
  53. 53.
    Biason-Lauber A, Konrad D, Meyer M, DeBeaufort C, Schoenle EJ. Ovaries and female phenotype in a girl with 46,XY karyotype and mutations in the CBX2 gene. Am J Hum Genet. 2009;84(5):658–63.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Eid W, Opitz L, Biason-Lauber A. Genome-wide identification of CBX2 targets: insights in the human sex development network. Mol Endocrinol. 2015;29(2):247–57.PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Sproll P, Eid W, Gomes CR, Mendonca BB, Gomes NL, Costa EM, Biason-Lauber A. Assembling the jigsaw puzzle: CBX2 isoform 2 and its targets in disorders/differences of sex development. Mol Genet Genomic Med. 2018;6(5):785–95.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Granados A, Alaniz VI, Mohnach L, Barseghyan H, Vilain E, Ostrer H, Quint EH, Chen M, Keegan CE. MAP3K1-related gonadal dysgenesis: six new cases and review of the literature. Am J Med Genet C Semin Med Genet. 2017;175(2):253–9.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Brauner R, Picard-Dieval F, Lottmann H, Rouget S, Bignon-Topalovic J, Bashamboo A, McElreavey K. Familial forms of disorders of sex development may be common if infertility is considered a comorbidity. BMC Pediatr. 2016;16(1):195.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Fan W, Wang B, He S, Zhang T, Yin C, Chen Y, Zheng S, Zhang J, Li L. A novel missense mutation 224G>T (R75M) in SRY coding region interferes with nuclear import and results in 46, XY complete gonadal dysgenesis. PLoS One. 2016;11(12):e0168484.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Kasai F, Ferguson-Smith MA. A collection of XY female cell lines. Hum Cell. 2018;31(2):175–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Bhagavath B, Layman LC, Ullmann R, Shen Y, Ha K, Rehman K, Looney S, McDonough PG, Kim HG, Carr BR. Familial 46,XY sex reversal without campomelic dysplasia caused by a deletion upstream of the SOX9 gene. Mol Cell Endocrinol. 2014;393(1–2):1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kim GJ, Sock E, Buchberger A, Just W, Denzer F, Hoepffner W, German J, Cole T, Mann J, Seguin JH, Zipf W, Costigan C, Schmiady H, Rostásy M, Kramer M, Kaltenbach S, Rösler B, Georg I, Troppmann E, Teichmann AC, Salfelder A, Widholz SA, Wieacker P, Hiort O, Camerino G, Radi O, Wegner M, Arnold HH, Scherer G. Copy number variation of two separate regulatory regions upstream of SOX9 causes isolated 46,XY or 46,XX disorder of sex development. J Med Genet. 2015;52(4):240–7.PubMedCrossRefGoogle Scholar
  62. 62.
    Katoh-Fukui Y, Igarashi M, Nagasaki K, Horikawa R, Nagai T, Tsuchiya T, Suzuki E, Miyado M, Hata K, Nakabayashi K, Hayashi K, Matsubara Y, Baba T, Morohashi K, Igarashi A, Ogata T, Takada S, Fukami M. Testicular dysgenesis/regression without campomelic dysplasia in patients carrying missense mutations and upstream deletion of SOX9. Mol Genet Genomic Med. 2015;3(6):550–7.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Cox JJ, Willatt L, Homfray T. Woods CG. A SOX9 duplication and familial 46,XX developmental testicular disorder. N Engl J Med. 2011;364(1):91–3.PubMedCrossRefGoogle Scholar
  64. 64.
    Portnoi MF, Dumargne MC, Rojo S, Witchel SF, Duncan AJ, Eozenou C, Bignon-Topalovic J, Yatsenko SA, Rajkovic A, Reyes-Mugica M, Almstrup K, Fusee L, Srivastava Y, Chantot-Bastaraud S, Hyon C, Louis-Sylvestre C, Validire P, de Malleray Pichard C, Ravel C, Christin-Maitre S, Brauner R, Rossetti R, Persani L, Charreau EH, Dain L, Chiauzzi VA, Mazen I, Rouba H, Schluth-Bolard C, MacGowan S, McLean WHI, Patin E, Rajpert-De Meyts E, Jauch R, Achermann JC, Siffroi JP, McElreavey K, Bashamboo A. Mutations involving the SRY-related gene SOX8 are associated with a spectrum of human reproductive anomalies. Hum Mol Genet. 2018;27(7):1228–40.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Moalem S, Babul-Hirji R, Stavropolous DJ, Wherrett D, Bägli DJ, Thomas P, Chitayat D. XX male sex reversal with genital abnormalities associated with a de novo SOX3 gene duplication. Am J Med Genet A. 2012;158A(7):1759–64.PubMedCrossRefGoogle Scholar
  66. 66.
    Seeherunvong T, Perera EM, Bao Y, Benke PJ, Benigno A, Donahue RP, Berkovitz GD. 46,XX sex reversal with partial duplication of chromosome arm 22q. Am J Med Genet A. 2004;127A(2):149–51.PubMedCrossRefGoogle Scholar
  67. 67.
    Falah N, Posey JE, Thorson W, Benke P, Tekin M, Tarshish B, Lupski JR, Harel T. 22q11.2q13 duplication including SOX10 causes sex-reversal and peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease. Am J Med Genet A. 2017;173(4):1066–70.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Chiang HS, Wu YN, Wu CC, Hwang JL. Cytogenic and molecular analyses of 46,XX male syndrome with clinical comparison to other groups with testicular azoospermia of genetic origin. J Formos Med Assoc. 2013;112(2):72–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Suntharalingham JP, Buonocore F, Duncan AJ, Achermann JC. DAX-1 (NR0B1) and steroidogenic factor-1 (SF-1, NR5A1) in human disease. Best Pract Res Clin Endocrinol Metab. 2015;29(4):607–19.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Mou L, Xie N, Yang L, Liu Y, Diao R, Cai Z, Li H, Gui Y. A novel mutation of DAX-1 associated with secretory azoospermia. PLoS One. 2015;10(7):e0133997.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sukumaran A, Desmangles JC, Gartner LA, Buchlis J. Duplication of dosage sensitive sex reversal area in a 46, XY patient with normal sex determining region of Y causing complete sex reversal. J Pediatr Endocrinol Metab. 2013;26(7–8):775–9.PubMedGoogle Scholar
  72. 72.
    Mello MP, Coeli FB, Assumpção JG, Castro TM, Maciel-Guerra AT, Marques-de-Faria AP, Baptista MT, Guerra-Júnior G. Novel DMRT1 3’UTR+11insT mutation associated to XY partial gonadal dysgenesis. Arq Bras Endocrinol Metabol. 2010;54(8):749–53.PubMedCrossRefGoogle Scholar
  73. 73.
    Lima AC, Carvalho F, Gonçalves J, Fernandes S, Marques PI, Sousa M, Barros A, Seixas S, Amorim A, Conrad DF, Lopes AM. Rare double sex and mab-3-related transcription factor 1 regulatory variants in severe spermatogenic failure. Andrology. 2015;3(5):825–33.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Werner R, Merz H, Birnbaum W, Marshall L, Schröder T, Reiz B, Kavran JM, Bäumer T, Capetian P, Hiort O. 46,XY gonadal dysgenesis due to a homozygous mutation in Desert Hedgehog (DHH) identified by exome sequencing. J Clin Endocrinol Metab. 2015;100(7):E1022–9.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Paris F, Flatters D, Caburet S, Legois B, Servant N, Lefebvre H, Sultan C, Veitia RA. A novel variant of DHH in a familial case of 46,XY disorder of sex development: insights from molecular dynamics simulations. Clin Endocrinol. 2017;87(5):539–44.CrossRefGoogle Scholar
  76. 76.
    Naasse Y, Bakhchane A, Charoute H, Jennane F, Bignon-Topalovic J, Malki A, Bashamboo A, Barakat A, Rouba H, McElreavey K. A novel homozygous missense mutation in the FU-CRD2 domain of the R-spondin1 gene associated with familial 46,XX DSD. Sex Dev. 2017;11(5–6):269–74.PubMedCrossRefGoogle Scholar
  77. 77.
    Tomaselli S, Megiorni F, De Bernardo C, Felici A, Marrocco G, Maggiulli G, Grammatico B, Remotti D, Saccucci P, Valentini F, Mazzilli MC, Majore S, Grammatico P. Syndromic true hermaphroditism due to an R-spondin1 (RSPO1) homozygous mutation. Hum Mutat. 2008;29(2):220–6.PubMedCrossRefGoogle Scholar
  78. 78.
    Yang XW, He WB, Gong F, Li W, Li XR, Zhong CG, Lu GX, Lin G, Du J, Tan YQ. Novel FOXL2 mutations cause blepharophimosis-ptosis-epicanthus inversus syndrome with premature ovarian insufficiency. Mol Genet Genomic Med. 2018;6(2):261–7.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Philibert P, Biason-Lauber A, Gueorguieva I, Stuckens C, Pienkowski C, Lebon-Labich B, Paris F, Sultan C. Molecular analysis of WNT4 gene in four adolescent girls with mullerian duct abnormality and hyperandrogenism (atypical Mayer-Rokitansky-Küster-Hauser syndrome). Fertil Steril. 2011;95(8):2683–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Domenice S, Corrêa RV, Costa EM, Nishi MY, Vilain E, Arnhold IJ, Mendonca BB. Mutations in the SRY, DAX1, SF1 and WNT4 genes in Brazilian sex-reversed patients. Braz J Med Biol Res. 2004;37(1):145–50.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Ibrahim A. Abdel-Hamid
    • 1
  • Ezzat S. Elsobky
    • 2
  • Moustafa A. Elsaied
    • 1
  1. 1.Department of AndrologyMansoura Faculty of Medicine, Mansoura University HospitalMansouraEgypt
  2. 2.Genetics Unit, Pediatrics DepartmentAin Shams University, Medical Genetics CenterCairoEgypt

Personalised recommendations