Advertisement

Kartagener and Immotile Cilia Syndrome

  • Igor Faria Dutra
  • Matheus Roque
Chapter
  • 31 Downloads

Abstract

Among the many causes of male infertility, Kartagener syndrome (KS) – also known as immotile cilia syndrome or primary ciliary dyskinesia (PCD) – is among its genetic causes and deserves special attention, as it is accompanied by many complications that may severely affect the patient’s quality of life. PCD was first reported by Kartagener in 1933, when they described four patients presenting with the triad of chronic sinusitis, bronchiectasis, and situs inversus, thus establishing KS. Forty years later, Afzelius noted that these patients had “immotile” cilia and defective ciliary ultrastructure, specifically noticing a functional change in dynein arms, promoting decreased mucociliary clearance due to a lack of ciliary movement, which is known as “immotile cilia syndrome.” Concerning fertility, ciliary dysfunction may affect both male and female fertility. As the sperm flagellum is a type of cilia, an abnormal ciliary structure may lead to the reduction or inability of the flagellum to adequately work; as a consequence, male infertility may occur. On the other hand, ciliary dysfunction may also occur in the fallopian tubes of affected women, leading to an increased risk of ectopic pregnancy or infertility. ICSI represents a successful milestone for coping with infertility in men with KS, in which spermatozoa are either completely evident or initially immobile in the ejaculate. The use of testicular spermatozoa in combination with ICSI may serve as an alternative treatment and may be associated with even better results when compared to ejaculate sperm. Genetic counseling is strongly recommended for these patients.

Keywords

Kartagener syndrome Immotile cilia syndrome Male infertility IVF/ICSI 

References

  1. 1.
    Practice Committee of the American Society for Reproductive Medicine. Diagnostic evaluation of the infertile male: a committee opinion. Fertil Steril. 2015;103:e18–25.Google Scholar
  2. 2.
    Afzelius BA. The immotile-cilia syndrome: a microtubule-associated defect. CRC Crit Rev Biochem. 1985;19:63–87.PubMedCrossRefGoogle Scholar
  3. 3.
    Leigh MW, O’Callaghan C, Knowles MR. The challenges of diagnos- ing primary ciliary dyskinesia. Proc Am Thorac Soc. 2011;8(5):434–7.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Haver K. The time is right for an international primary ciliary dyskinesia disease registry. Eur Respir J. 2017;49(1):1602143.PubMedCrossRefGoogle Scholar
  5. 5.
    Shoemark A, Frost E, Dixon M, et al. Accuracy of immunofluorescence in the diagnosis of primary ciliary dyskinesia. Am J Respir Crit Care Med. 2017;196(1):94–101.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Frija-Masson J, Bassinet L, Honoré I, et al. Clinical characteristics, functional respiratory decline and follow-up in adult patients with primary ciliary dyskinesia. Thorax. 2017;72(2):154–60.PubMedCrossRefGoogle Scholar
  7. 7.
    Davis SD, Ferkol TW, Rosenfeld M, et al. Clinical features of childhood primary ciliary dyskinesia by genotype and ultrastructural phenotype. Am J Respir Crit Care Med. 2015;191(3):316–24.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Chang W, Kung W, Chiu W. Kartagener syndrome. QJM: Int J Med. 2017;110(8):523.CrossRefGoogle Scholar
  9. 9.
    Leigh MW, Pittman JE, Carson JL, et al. Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009;11:473–87.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sha YA, Ding L, Li P. Management of primary ciliary dyskinesia/Katagener’s syndrome in infertile male patients and current progress in defining the underlying genetic mechanism. Asian J Androl. 2014;16:101–6.PubMedCrossRefGoogle Scholar
  11. 11.
    Kartagener M. Zur Pathogenese der Bronchiektasien I. Bronchiektasien bei Situs viscerum Inversus Beitr Klein Tuberk. 1933;83:489–501.CrossRefGoogle Scholar
  12. 12.
    Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193(4250):317–9.PubMedCrossRefGoogle Scholar
  13. 13.
    Eliasson R, Mossberg B, Camner P, Afzelius BA. The immotile-cilia syndrome. A congenital ciliary abnormality as an etiologic factor in chronic airway infections and male sterility. N Engl J Med. 1977;297(1):1–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Sturgess JM, Chao J, Wong J, Aspin N, Turner JA. Cilia with defective radial spokes: a cause of human respiratory disease. N Engl J Med. 1979;300(2):53–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Wakefield S, Waite D. Abnormal cilia in Polynesians with bronchi- ectasis. Am Rev Respir Dis. 1980;121(6):1003–10.PubMedGoogle Scholar
  16. 16.
    Herzon FS, Murphy S. Normal ciliary ultrastructure in children with Kartagener’s syndrome. Ann Otol Rhinol Laryngol. 1980;89(1, Pt 1):81–3.PubMedCrossRefGoogle Scholar
  17. 17.
    Mitchison HM, Valente EM. Motile and non-motile cilia in human pathology: from function to phenotypes. J Pathol. 2017;241:294–309.PubMedCrossRefGoogle Scholar
  18. 18.
    Satir P, Christensen ST. Structure and function of mammalian cilia. Histochem Cell Biol. 2008;129:687–93.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Milla CE. The evolving spectrum of ciliopathies and respiratory disease. Curr Opin Pediatr. 2016;28:339–47.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Ibanez-Tallon I, Heintz N, Omran H. To beat or not to beat: roles of cilia in development and disease. Hum Mol Genet. 2003;12:27–35.CrossRefGoogle Scholar
  21. 21.
    Stannard W, Rutman A, Wallis C, O’Callaghan C. Central microtubular agenesis causing primary ciliary dyskinesia. Am J Respir Crit Care Med. 2004;169:634–7.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    van’s Gravesande KS, Omran H. Primary ciliary dyskinesia: clinical presentation, diagnosis and genetics. Ann Med. 2005;37:439–49.CrossRefGoogle Scholar
  23. 23.
    Afzelius BA, Mossberg B, Bergström SE. Immotile cilia syndrome (pri- mary ciliary dyskinesis), including Kartagener syndrome. In: Scriver CS, Beaudet AL, Valle D, Sly WS, Childs B, Kinzler KW, Vogelstein B, editors. The metabolic and molecular bases of inherited disease, vol. 3. 8th ed. New York: McGraw-Hill; 2001. p. 4817–27.Google Scholar
  24. 24.
    El Zein L, Omran H, Bouvagnet P. Lateralization defects and ciliary dyskinesia: lessons from algae. Trends Genet. 2003;19:162–7.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Omran H, Haffner K, Volkel A, et al. Homozygosity mapping of a gene locus for primary ciliary dyskinesia on chromosome 5p and identification of the heavy dynein chain DNAH5 as a candidate gene. Am J Respir Cell Mol Biol. 2000;23:696–702.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Guichard C, Harricane MC, Lafitte JJ, et al. Axonemal dynein intermediate-chain gene (DNAI1) mutations result in situs inversus and primary ciliary dyskinesia (Kartagener syndrome). Am J Hum Genet. 2001;68:1030–5.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hornef N, Olbrich H, Horvath J, Zariwala MA, Fliegauf M, Loges NT, Wildhaber J, Noone PG, Kennedy M, Antonarakis SE, et al. DNAH5 mutations are a com- mon cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med. 2006;174:120–6.PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Hjeij R, Lindstrand A, Francis R, Zariwala MA, Liu X, Li Y, Damerla R, Dougherty GW, Abouhamed M, Olbrich H, et al. ARMC4 mutations cause primary ciliary dyskinesia with randomization of left/right body asymmetry. Am J Hum Genet. 2013;93:357–67.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Onoufriadis A, Shoemark A, Munye MM, James CT, Schmidts M, Patel M, Rosser EM, Bacchelli C, Beales PL, Scambler PJ, et al.; UK10K. Combined exome and whole-genome sequencing identifies mutations in ARMC4 as a cause of primary ciliary dyskinesia with defects in the outer dynein arm. J Med Genet. 2014;51:61–67.Google Scholar
  30. 30.
    Panizzi JR, Becker-Heck A, Castleman VH, Al-Mutairi DA, Liu Y, Loges NT, Pathak N, Austin-Tse C, Sheridan E, Schmidts M, et al. CCDC103 mutations cause primary ciliary dyskinesia by disrupting assembly of ciliary dynein arms. Nat Genet. 2012;44:714–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    King SM, Patel-King RS. The oligomeric outer dynein arm assembly factor CCDC103 is tightly integrated within the ciliary axoneme and exhibits periodic binding to microtubules. J Biol Chem. 2015;290:7388–401.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Hjeij R, Onoufriadis A, Watson CM, Slagle CE, Klena NT, Dougherty GW, Kurkowiak M, Loges NT, Diggle CP, Morante NF, et al.; UK10K Consortium. CCDC151 mutations cause primary ciliary dyskinesia by disruption of the outer dynein arm docking complex forma- tion. Am J Hum Genet. 2014;95:257–274.Google Scholar
  33. 33.
    Onoufriadis A, Paff T, Antony D, Shoemark A, Micha D, Kuyt B, Schmidts M, Petridi S, Dankert-Roelse JE, Haarman EG, et al.; UK10K. Splice-site mutations in the axonemal outer dynein arm docking complex gene CCDC114 cause primary ciliary dyskinesia. Am J Hum Genet. 2013:92:88–98.PubMedCrossRefGoogle Scholar
  34. 34.
    Knowles MR, Leigh MW, Ostrowski LE, Huang L, Carson JL, Hazucha MJ, Yin W, Berg JS, Davis SD, Dell SD, et al.; Genetic Disorders of Mucociliary Clearance Consortium. Exome sequencing identifies mutations in CCDC114 as a cause of primary ciliary dyskinesia. Am J Hum Genet. 2013;92:99–106.PubMedCrossRefGoogle Scholar
  35. 35.
    Horani A, Ferkol TW, Dutcher SK, Brody SL. Genetics and biology of primary ciliary dyskinesia. Paediatr Respir Rev. 2016;18:18–24.PubMedGoogle Scholar
  36. 36.
    Desai PB, Dean AB, Mitchell DR. Cytoplasmic preassembly and trafficking of axonemal dyneins. In: King S, editor. Dyneins. 2nd ed. London: Academic Press; 2018. p. 140–61.CrossRefGoogle Scholar
  37. 37.
    Dean AB, Mitchell DR. Late steps in cyto- plasmic maturation of assembly-competent axonemal outer arm dynein in Chlamydomonas require interaction of ODA5 and ODA10 in a complex. Mol Biol Cell. 2015;26:3596–605.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Desai PB, Freshour JR, Mitchell DR. Chlamydomonas axonemal dynein assembly locus ODA8 encodes a conserved flagellar protein needed for cytoplasmic maturation of outer dynein arm complexes. Cytoskeleton. 2015;72:16–28.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Berdon WE, Willi U. Situs inversus, bronchiectasis, and sinusitis and its relation to immotile cilia: history of the diseases and their discoverers – Manes Kartagener and Bjorn Afzelius. Pediatr Radiol. 2004;34:38–42.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Lucas JS, Chetcuti P, Copeland F, Hogg C, Kenny T, Moya E, O’Callaghan C, Walker WT. Over- coming challenges in the management of primary ciliary dyskinesia: the UK model. Paediatr Respir Rev. 2014;15:142–5.PubMedGoogle Scholar
  41. 41.
    Hosie PH, Fitzgerald DA, Jaffe A, Birman CS, Rutland J, Morgan LC. Presentation of primary ciliary dyskinesia in children: 30 years’ experience. J Paediatr Child Health. 2015;51:722–6.PubMedCrossRefGoogle Scholar
  42. 42.
    Noone PG, Leigh MW, Sannuti A, Minnix SL, Carson JL, Hazucha M, Zariwala MA, Knowles MR. Primary ciliary dyskinesia: diagnostic and phenotypic fea- tures. Am J Respir Crit Care Med. 2004;169:459–67.PubMedCrossRefGoogle Scholar
  43. 43.
    Samuel I. Kartagener’s syndrome with normal spermatozoa [letter]. J Am Med Assoc. 1987;258:1329–30.CrossRefGoogle Scholar
  44. 44.
    Conraads VMA, Galdermans DI, Kockx MM, Jacob WA, Van Schaar-denburg C, Collen D. Ultrastructurally normal and motile spermatozoa in a fertile man with Kartagener’s syndrome. Chest. 1992;102:1616–8.PubMedCrossRefGoogle Scholar
  45. 45.
    Corbelli R, Bringolf-Isler B, Amacher A, et al. Nasal nitric oxide measurements to screen children for primary ciliary dyskinesia. Chest. 2004;126:1054–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Narang I, Ersu R, Wilson NM, Bush A. Nitric oxide in chronic airway inflammation in children: diagnostic use and pathophysiological significance. Thorax. 2002;57:586–9.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Matsumoto Y, Goto S, Hashimoto H, Hokeguchi S, Shiotani M, Okada H. A healthy birth after intracytoplasmic sperm injection using ejaculated spermatozoa from a patient with Kartagener’s syndrome. Fertil Steril. 2010;2074(93):e17–9.Google Scholar
  48. 48.
    Shibahara H, Hamada Y, Hasegawa A, Wakimoto E, Toji H, Shigeta M, et al. Relationship between the sperm motility index assessed by the sperm quality analyzer and the outcome of intracytoplasmic sperm injection. J Assist Reprod Genet. 1999;16:540–5.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Ved S, Montag M, Schmutzler A, Prietl G, Haidl G, Van der Ven H. Pregnancy following intracytoplasmic sperm injection of immotile spermatozoa selected by the hypo-osmotic swelling-test: a case report. Andrologia. 1997;29:241–2.PubMedCrossRefGoogle Scholar
  50. 50.
    Sallam H, Farrag A, Agameya A, Ezzeldin F, Eid A, Sallam A. The use of a modified hypo-osmotic swelling test for the selection of viable ejaculated and testicular immotile spermatozoa in ICSI. Hum Reprod. 2001;16:272–6.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Cayan S, Conaghan J, Schriock ED, Ryan IP, Black LD. Birth after intracytoplasmic sperm injec- tion with use of testicular sperm from men with Kar- tagener/immotile cilia syndrome. Fertil Steril. 2001;76:612–4.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kaushal M, Baxi A. Birth after intracytoplasmic sperm injection with use of testicular sperm from men with Kartagener or immotile cilia syndrome. Fertil Steril. 2007;88:497–e9–11.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Kay VJ, Irvine DS. Successful in-vitro fertilization pregnancy with spermatozoa from a patient with Kartagener’s syndrome. Hum Reprod. 2000;15:135–8.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Von Zumbusch A, Fiedler K, Mayerhofer A, Jessberger B, Ring J, Vogt HJ. Birth of healthy children after intracytoplasmic sperm injection in two couples with male Kartagener’s syndrome. Fertil Steril. 1998;70:643–6.CrossRefGoogle Scholar
  55. 55.
    Westlander G, Barry M, Petrucco O, Norman R. Different fertilization rates between immotile tes- ticular spermatozoa and immotile ejaculated sper- matozoa for ICSI in men with Kartagener’s syndrome: case reports. Hum Reprod. 2003;18:1286–8.PubMedCrossRefGoogle Scholar
  56. 56.
    Abu-Musa A, Hannoun A, Khabbaz A, Devroey P. Fail- ure of fertilization after intracytoplasmic sperm injection in a patient with Kartagener’s syndrome and totally immotile spermatozoa. Hum Reprod. 1999;14:2517–8. 10.PubMedCrossRefGoogle Scholar
  57. 57.
    Nijs M, Vanderzwalmen P, Vandamme B, Segal-Bertin G, Lejeune B, Segal L, et al. Fertilizing ability of immotile spermatozoa after intracytoplasmic sperm injection. Hum Reprod. 1996;11:2180–5.PubMedCrossRefGoogle Scholar
  58. 58.
    Peeraer K, Nijs M, Raick D, Ombelet W. Pregnancy after ICSI with ejaculated immotile spermatozoa from a patient with immotile cilia syndrome: a case report and review of the literature. Reprod Biomed Online. 2004;9:659–63.PubMedCrossRefGoogle Scholar
  59. 59.
    Liu J, Nagy Z, Joris H, Tournaye H, Smitz J, Camus M, et al. Analysis of 76 fertilization failure cycles out of 2732 intracytoplasmic sperm injection cycles. Hum Reprod. 1995;10:2630–6.PubMedCrossRefGoogle Scholar
  60. 60.
    Ron-El R, Strassburger D, Friedler S, Komarovsky D, Bern O, Raziel A. Repetitive ejaculation before intracytoplasmic sperm injection in patients with absolute immotile spermatozoa. Hum Reprod. 1998;13:630–3.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Bedford J. Epididymal physiology: its implications for epididymal microsurgery. In: Schoysman R, editor. Microsurgery of male infertility. Palermo, Italy: Fondazione per gli studi sulla riproduzione umana; 1994. p. 71–100.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Igor Faria Dutra
    • 1
    • 2
  • Matheus Roque
    • 3
  1. 1.Department of Reproductive MedicineORIGEN-Center for Reproductive MedicineRio de JanieroBrazil
  2. 2.Department of Surgery, Division of UrologyAntonio Pedro University Hospital, Fluminense Federal UniversityRio de JanieroBrazil
  3. 3.Department of Reproductive MedicineMater Prime – Reproductive MedicineSão PauloBrazil

Personalised recommendations