SMART–JaCaMo: An Organisation-Based Team for the Multi-Agent Programming Contest

  • Tabajara KrausburgEmail author
  • Rafael Cauê Cardoso
  • Juliana Damasio
  • Vitor Peres
  • Giovani P. Farias
  • Débora Cristina Engelmann
  • Jomi Fred Hübner
  • Rafael H. Bordini
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11957)


The Multi-Agent Programming Contest in 2018 expanded upon the Agents in the City scenario used in the 2016 and 2017 editions of the contest. In this scenario two teams compete to score points by building and attacking wells using realistic city maps from OpenStreetMap. Wells are the main addition to the new version of the scenario; they cost money to build and generate score overtime but can be dismantled by agents from the other team. This, along with other additions, made it a significantly more complex scenario than before. In this paper, we describe the strategies used by our team, highlighting our adaptations and new additions from our participation in the previous years. We have fully explored the use of all three programming dimensions (agent, environment, and organisation) available in JaCaMo, the multi-agent system development platform that we used to implement our team. Our agents were able to dynamically switch between organisational roles, allowing them to promptly respond to changes in the environment and different opponent strategies. We were the highest-scoring team in the contest and our multi-agent system turned out to be stable and robust in solving the difficult problems posed by the contest scenario.


Multi-Agent Programming Contest Role-based multi-agent systems Agents in the City JaCaMo 


  1. 1.
    Ahlbrecht, T., Dix, J., Fiekas, N.: Multi-agent programming contest 2016. Int. J. Agent-Oriented Softw. Eng. 6(1), 55–85 (2018)CrossRefGoogle Scholar
  2. 2.
    Ahlbrecht, T., Dix, J., Fiekas, N.: Multi-agent programming contest 2017. Ann. Math. Artif. Intell. 84(1–2), 1–16 (2018)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Baségio, T.L., Bordini, R.H.: Allocating structured tasks in heterogeneous agent teams. Comput. Intell. 35(1), 124–155 (2019)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface standard for agent platforms. Ann. Math. Artif. Intell. 61(4), 261–295 (2011)CrossRefGoogle Scholar
  5. 5.
    Boissier, O., Bordini, R.H., Hübner, J.F., Ricci, A., Santi, A.: Multi-agent oriented programming with JaCaMo. Sci. Comput. Prog. 78(6), 747–761 (2013)CrossRefGoogle Scholar
  6. 6.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak using Jason. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  7. 7.
    Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Comput. Intell. 4(3), 349–355 (1988)CrossRefGoogle Scholar
  8. 8.
    Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for BDI agent systems. In: Bordini, R.H., Dastani, M., Dix, J., El Fallah Seghrouchni, A. (eds.) ProMAS 2004. LNCS (LNAI), vol. 3346, pp. 44–65. Springer, Heidelberg (2005). Scholar
  9. 9.
    Cardoso, R.C., Bordini, R.H.: Decentralised planning for multi-agent programming platforms. In: Proceedings of the International Conference on Autonomous Agents and MultiAgent Systems, pp. 799–818, Richland (2019)Google Scholar
  10. 10.
    Cardoso, R.C., Krausburg, T., Baségio, T., Engelmann, D.C., Hübner, J.F., Bordini, R.H.: SMART-JaCaMo: an organization-based team for the multi-agent programming contest. Ann. Math. Artif. Intell. 84(1), 75–93 (2018)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Cardoso, R.C., Pereira, R.F., Krzisch, G., Magnaguagno, M.C., Baségio, T., Meneguzzi, F.: Team PUCRS: a decentralised multi-agent solution for the agents in the city scenario. Int. J. Agent-Oriented Softw. Eng. 6(1), 3–34 (2018)CrossRefGoogle Scholar
  12. 12.
    Rocha Costa, A.C.: Two concepts of module, for agent societies and inter-societal agent systems. In: El Fallah-Seghrouchni, A., Ricci, A., Son, T.C. (eds.) EMAS 2017. LNCS (LNAI), vol. 10738, pp. 56–72. Springer, Cham (2018). Scholar
  13. 13.
    Hübner, J.F., Sichman, J.S., Boissier, O.: Developing organised multiagent systems using the moise+ model: programming issues at the system and agent levels. Int. J. Agent-Oriented Softw. Eng. 1(3/4), 370–395 (2007)CrossRefGoogle Scholar
  14. 14.
    Omicini, A., Ricci, A., Viroli, M.: Artifacts in the A&A meta-model for multi-agent systems. Auton. Agents Multi-Agent Syst. 17(3), 432–456 (2008)CrossRefGoogle Scholar
  15. 15.
    Rao A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language. In: Van de Velde, W., Perram, J.W. (eds.) Agents Breaking Away. MAAMAW 1996. LNCS (Lecture Notes in Artificial Intelligence), vol. 1038, pp. pp. 42–55. Springer, Heidelberg (1996). Scholar
  16. 16.
    Rao, A.S., Georgeff, M.P.: BDI agents: from theory to practice. In: Proceeding of the International Conference on Multi-Agent Systems, pp. 312–319. San Francisco (1995)Google Scholar
  17. 17.
    Ricci, A., Piunti, M., Viroli, M., Omicini, A.: Environment programming in CArtAgO. In: Multi-Agent Programming: Languages, Tools and Applications, Chap. 8, pp. 259–288. Multiagent Systems, Artificial Societies, and Simulated Organizations, Springer, Boston (2009). Scholar
  18. 18.
    Smith, R.G.: The contract net protocol: high-level communication and control in a distributed problem solver. IEEE Trans. Comput. 29(12), 1104–1113 (1980)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tabajara Krausburg
    • 1
    Email author
  • Rafael Cauê Cardoso
    • 2
  • Juliana Damasio
    • 1
  • Vitor Peres
    • 1
  • Giovani P. Farias
    • 1
  • Débora Cristina Engelmann
    • 1
  • Jomi Fred Hübner
    • 3
  • Rafael H. Bordini
    • 1
  1. 1.School of TechnologyPUCRSPorto AlegreBrazil
  2. 2.University of LiverpoolLiverpoolUK
  3. 3.Federal University of Santa CatarinaFlorianópolisBrazil

Personalised recommendations