Coordination of Parameters of Transportation System Elements

  • Elena Timukhina
  • Oleg Osokin
  • Vadim Permikin
  • Anton KoshcheevEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1116)


Rationalization of transportation objects is one of the main challenges in the sphere of operations control. The analysis of the currently used optimization techniques showed that they don’t always provide economically efficient decisions, e.g., the simulation descent can’t guarantee a converge to a global optimum. In order to increase the precision of solutions aimed at improving the design and technological processes of transportation systems a comprehensive study of optimization via simulation literature was carried out. The survey showed that hybrid optimization techniques provide good results and prove to be less time and labor consuming compared to other optimization via simulation methods. As a result, the paper shows an application of hybrid optimization technique in simulation framework on example of chemical and metallurgical enterprise.


Simulation Optimization Hybrid approach Coordination of parameters Transportation system 


  1. 1.
    Hansen, I., Pachl, J. (eds.): Railway Timetable and Traffic. Eurailpress, Hamburg (2008)Google Scholar
  2. 2.
    Abril, M., Barber, F., Ingolotti, L., Salido, M.A., Tormos, P., Lova, A.: An assessment of railway capacity. Transp. Res. Part E: Log. Transp. Rev. 44(5), 774–806 (2008). Scholar
  3. 3.
    Kontaxi, E., Ricci, S.: Railway capacity handbook: a systematic approach to methodologies. Procedia – Soc. Behav. Sci. 48, 2689–2696 (2012). Scholar
  4. 4.
    Malavasi, G., Molková, T., Ricci, S., Rotoli, F.: A synthetic approach to the evaluation of the carrying capacity of complex railway nodes. J. Rail Transp. Plann. Manag. 4(1), 28–42 (2014). Scholar
  5. 5.
    Timukhina, E., Osokin, O., Tushin, N., Koshcheev, A.: Coordination of parameters of transport system elements in the conditions of lack of traffic and estimated capacity (2020)Google Scholar
  6. 6.
    Timukhina, E.N., Kashcheeva, N.V., Koshcheev, A.A.: Analysis of the railway station calculating methods. Transp.: nauka, tekhnika, upravlenie 7, 31–34 (2015)Google Scholar
  7. 7.
    Kozlov, P.A.: Theoretical basis, organizational forms, methods to optimize the flexible technology of the ferrous industry transportation service. D.Sc. thesis. LPI, Lipetsk (1987)Google Scholar
  8. 8.
    Tekin, E., Sabuncuoglu, I.: Simulation optimization: a comprehensive review on theory and applications. IIE Trans. 36(11), 1067–1081 (2004). Scholar
  9. 9.
    Venter, G.: Review of optimization techniques. In: Encyclopedia of Aerospace Engineering. Wiley (2010).
  10. 10.
    Fu, M.C., Glover, F.W., April, J.: simulation optimization: a review, new developments, and applications. In: Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A. (eds.) Proceedings of the 2005 Winter Simulation Conference, pp. 83–95 (2005)Google Scholar
  11. 11.
    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, New York (2000)zbMATHGoogle Scholar
  12. 12.
    Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms and applications. Ann. Oper. Res. 240(1), 351–380 (2016). Scholar
  13. 13.
    Fu, M.C.: Handbook of Simulation Optimization. Springer, New York (2015)CrossRefGoogle Scholar
  14. 14.
    Hong, L.J., Nelson, B.L.: A brief introduction to optimization via simulation. In: Rosetti, M.D., Hill, R.R., Johannson, B., Dunkin, A., Ingalls, R.G. (eds.) Proceedings of the 2009 Winter Simulation Conference, pp. 75–85 (2009).
  15. 15.
    Ho, Y.C., Zhao, Q.C., Jia, Q.S.: Ordinal Optimization: Soft Optimization for Hard Problems. Springer, New York (2007). Scholar
  16. 16.
    Jia, Q.S., Ho, Y.C., Zhao, Q.C.: Comparison of selection rules for ordinal optimization. Math. Comput. Model. 43(9–10), 1150–1171 (2006). Scholar
  17. 17.
    Teng, S., Lee, L.H., Chew, E.P.: Multiobjective ordinal optimization for simulation optimization problems. Automatica 43(11), 1884–1895 (2007). Scholar
  18. 18.
    Andradottir, S.: An overview of simulation optimization via random search. In: Henderson, S.G., Nelson, B.L. (eds.) Handbooks in Operations Research and Management Science: Simulation, vol. 13, chap. 20, pp. 617–631. Elsevier (2006)Google Scholar
  19. 19.
    Rosen, S.L., Harmonosky, C.M.: An improved simulated annealing simulation optimization method for discrete parameter stochastic systems. Comput. Oper. Res. 32(2), 343–358 (2005). Scholar
  20. 20.
    Gendreau, M., Potvin, J.Y.: Tabu search. In: Handbook of Metaheuristics, International Series in Operations Research and Management Science, vol. 146, 2nd edn., pp. 41–60. Springer (2010). Scholar
  21. 21.
    Riley, L.A.: Discrete-event simulation optimization: a review of past approaches and propositions for future direction. In: Proceedings of the 2013 Summer Computer Simulation Conference, Vista, Toronto (2013). Accessed 22 July 2019
  22. 22.
    Andradottir, S., Prudius, A.A.: Simulation optimization using balanced explorative and exploitative search. In: Ingalls, R.G., Rosetti, M.D., Smith, J.S., Peters, B.A. (eds.) Proceedings of the 2004 Winter Simulation Conference, vol. 1, pp. 545–549 (2004).
  23. 23.
    Xu, J., Hong, L.J., Nelson, B.L.: Industrial strength COMPASS: a comprehensive algorithm and software for optimization via simulation. ACM Trans. Model. Comput. Simul. 20(1), 1–29 (2010). Scholar
  24. 24.
    Xu, J., Hong, L.J., Nelson, B.L.: Speeding up COMPASS for high-dimensional discrete optimization via simulation. Oper. Res. Lett. 38(6), 550–555 (2010). Scholar
  25. 25.
    Timukhina, E.N., Kashcheeva, N.V., Afanasyeva, N.A., Koshcheev, A.A.: Feasibility study of solutions aimed to increase the capacity of serving facilities in systems of railway transport. Transp. Urals 1(56), 35–44 (2018). Scholar
  26. 26.
    Timukhina, E.N., Kashcheeva, N.V., Kolokolnikov, V.S., Koshcheev, A.A.: Increase of existing railway transport systems economic efficiency by the use of refined approach to calculate capacity of serving facilities. Siberian Transp. Univ. Bull. 2(49), 26–33 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ural State University of Railway TransportYekaterinburgRussian Federation
  2. 2.LLC NPH STRATEGMoscowRussian Federation

Personalised recommendations