Advertisement

Coordination of Parameters of Transportation System Elements

  • Elena Timukhina
  • Oleg Osokin
  • Vadim Permikin
  • Anton KoshcheevEmail author
Conference paper
  • 46 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1116)

Abstract

Rationalization of transportation objects is one of the main challenges in the sphere of operations control. The analysis of the currently used optimization techniques showed that they don’t always provide economically efficient decisions, e.g., the simulation descent can’t guarantee a converge to a global optimum. In order to increase the precision of solutions aimed at improving the design and technological processes of transportation systems a comprehensive study of optimization via simulation literature was carried out. The survey showed that hybrid optimization techniques provide good results and prove to be less time and labor consuming compared to other optimization via simulation methods. As a result, the paper shows an application of hybrid optimization technique in simulation framework on example of chemical and metallurgical enterprise.

Keywords

Simulation Optimization Hybrid approach Coordination of parameters Transportation system 

References

  1. 1.
    Hansen, I., Pachl, J. (eds.): Railway Timetable and Traffic. Eurailpress, Hamburg (2008)Google Scholar
  2. 2.
    Abril, M., Barber, F., Ingolotti, L., Salido, M.A., Tormos, P., Lova, A.: An assessment of railway capacity. Transp. Res. Part E: Log. Transp. Rev. 44(5), 774–806 (2008).  https://doi.org/10.1016/j.tre.2007.04.001CrossRefzbMATHGoogle Scholar
  3. 3.
    Kontaxi, E., Ricci, S.: Railway capacity handbook: a systematic approach to methodologies. Procedia – Soc. Behav. Sci. 48, 2689–2696 (2012).  https://doi.org/10.1016/j.sbspro.2012.06.1238CrossRefGoogle Scholar
  4. 4.
    Malavasi, G., Molková, T., Ricci, S., Rotoli, F.: A synthetic approach to the evaluation of the carrying capacity of complex railway nodes. J. Rail Transp. Plann. Manag. 4(1), 28–42 (2014).  https://doi.org/10.1016/j.jrtpm.2014.06.001CrossRefGoogle Scholar
  5. 5.
    Timukhina, E., Osokin, O., Tushin, N., Koshcheev, A.: Coordination of parameters of transport system elements in the conditions of lack of traffic and estimated capacity (2020)Google Scholar
  6. 6.
    Timukhina, E.N., Kashcheeva, N.V., Koshcheev, A.A.: Analysis of the railway station calculating methods. Transp.: nauka, tekhnika, upravlenie 7, 31–34 (2015)Google Scholar
  7. 7.
    Kozlov, P.A.: Theoretical basis, organizational forms, methods to optimize the flexible technology of the ferrous industry transportation service. D.Sc. thesis. LPI, Lipetsk (1987)Google Scholar
  8. 8.
    Tekin, E., Sabuncuoglu, I.: Simulation optimization: a comprehensive review on theory and applications. IIE Trans. 36(11), 1067–1081 (2004).  https://doi.org/10.1080/07408170490500654CrossRefGoogle Scholar
  9. 9.
    Venter, G.: Review of optimization techniques. In: Encyclopedia of Aerospace Engineering. Wiley (2010).  https://doi.org/10.1002/9780470686652.eae495
  10. 10.
    Fu, M.C., Glover, F.W., April, J.: simulation optimization: a review, new developments, and applications. In: Kuhl, M.E., Steiger, N.M., Armstrong, F.B., Joines, J.A. (eds.) Proceedings of the 2005 Winter Simulation Conference, pp. 83–95 (2005)Google Scholar
  11. 11.
    Law, A.M., Kelton, W.D.: Simulation Modeling and Analysis, 3rd edn. McGraw-Hill, New York (2000)zbMATHGoogle Scholar
  12. 12.
    Amaran, S., Sahinidis, N.V., Sharda, B., Bury, S.J.: Simulation optimization: a review of algorithms and applications. Ann. Oper. Res. 240(1), 351–380 (2016).  https://doi.org/10.1007/s10288-014-0275-2MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fu, M.C.: Handbook of Simulation Optimization. Springer, New York (2015)CrossRefGoogle Scholar
  14. 14.
    Hong, L.J., Nelson, B.L.: A brief introduction to optimization via simulation. In: Rosetti, M.D., Hill, R.R., Johannson, B., Dunkin, A., Ingalls, R.G. (eds.) Proceedings of the 2009 Winter Simulation Conference, pp. 75–85 (2009).  https://doi.org/10.1109/wsc.2009.5429321
  15. 15.
    Ho, Y.C., Zhao, Q.C., Jia, Q.S.: Ordinal Optimization: Soft Optimization for Hard Problems. Springer, New York (2007).  https://doi.org/10.1007/978-0-387-68692-9CrossRefGoogle Scholar
  16. 16.
    Jia, Q.S., Ho, Y.C., Zhao, Q.C.: Comparison of selection rules for ordinal optimization. Math. Comput. Model. 43(9–10), 1150–1171 (2006).  https://doi.org/10.1016/j.mcm.2005.05.032MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Teng, S., Lee, L.H., Chew, E.P.: Multiobjective ordinal optimization for simulation optimization problems. Automatica 43(11), 1884–1895 (2007).  https://doi.org/10.1016/j.automatica.2007.03.011MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Andradottir, S.: An overview of simulation optimization via random search. In: Henderson, S.G., Nelson, B.L. (eds.) Handbooks in Operations Research and Management Science: Simulation, vol. 13, chap. 20, pp. 617–631. Elsevier (2006)Google Scholar
  19. 19.
    Rosen, S.L., Harmonosky, C.M.: An improved simulated annealing simulation optimization method for discrete parameter stochastic systems. Comput. Oper. Res. 32(2), 343–358 (2005).  https://doi.org/10.1016/S0305-0548(03)00240-5MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gendreau, M., Potvin, J.Y.: Tabu search. In: Handbook of Metaheuristics, International Series in Operations Research and Management Science, vol. 146, 2nd edn., pp. 41–60. Springer (2010).  https://doi.org/10.1007/978-1-4419-1665-5zbMATHGoogle Scholar
  21. 21.
    Riley, L.A.: Discrete-event simulation optimization: a review of past approaches and propositions for future direction. In: Proceedings of the 2013 Summer Computer Simulation Conference, Vista, Toronto (2013). https://www.researchgate.net/publication/262318594. Accessed 22 July 2019
  22. 22.
    Andradottir, S., Prudius, A.A.: Simulation optimization using balanced explorative and exploitative search. In: Ingalls, R.G., Rosetti, M.D., Smith, J.S., Peters, B.A. (eds.) Proceedings of the 2004 Winter Simulation Conference, vol. 1, pp. 545–549 (2004).  https://doi.org/10.1109/wsc.2004.1371360
  23. 23.
    Xu, J., Hong, L.J., Nelson, B.L.: Industrial strength COMPASS: a comprehensive algorithm and software for optimization via simulation. ACM Trans. Model. Comput. Simul. 20(1), 1–29 (2010).  https://doi.org/10.1109/WSC.2004.1371360CrossRefzbMATHGoogle Scholar
  24. 24.
    Xu, J., Hong, L.J., Nelson, B.L.: Speeding up COMPASS for high-dimensional discrete optimization via simulation. Oper. Res. Lett. 38(6), 550–555 (2010).  https://doi.org/10.1016/j.orl.2010.09.003CrossRefzbMATHGoogle Scholar
  25. 25.
    Timukhina, E.N., Kashcheeva, N.V., Afanasyeva, N.A., Koshcheev, A.A.: Feasibility study of solutions aimed to increase the capacity of serving facilities in systems of railway transport. Transp. Urals 1(56), 35–44 (2018).  https://doi.org/10.20291/1815-9400-2018-1-35-44CrossRefGoogle Scholar
  26. 26.
    Timukhina, E.N., Kashcheeva, N.V., Kolokolnikov, V.S., Koshcheev, A.A.: Increase of existing railway transport systems economic efficiency by the use of refined approach to calculate capacity of serving facilities. Siberian Transp. Univ. Bull. 2(49), 26–33 (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Ural State University of Railway TransportYekaterinburgRussian Federation
  2. 2.LLC NPH STRATEGMoscowRussian Federation

Personalised recommendations