Advertisement

Study of Deformation of Structural Elements as Result of Concrete Creep

  • Nikita MaslennikovEmail author
  • Aleksander Panin
  • Alexej Semenov
  • Vjaheslav Kharlab
Conference paper
  • 44 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1116)

Abstract

The paper considers the basic principles of the linear theory of inherent creep and the possibility of its application to the calculation of shell structures made of concrete. A mathematical model of the deformation of the structure under consideration is shown in the form of a functional of the total strain potential energy. An algorithm based on the Ritz method is applied. The stability calculations of shallow shells of double curvature and square in plan are made, taking into account the creep of the material. The critical time values are found for different values of the applied load.

Keywords

Shells Creep Stress-strain state Buckling Rheology 

Notes

Acknowledgements

The research was supported by RSF (project No. 18-19-00474).

References

  1. 1.
    Iskhakov, I., Ribakov, Y.: Design Principles and Analysis of Thin Concrete Shells, Domes and Folders, p. 166. CRC Press/Taylor & Francis Group, Boca Raton (2016)Google Scholar
  2. 2.
    Chen, B., Yang, Q., et al.: Wind-induced response and equivalent static wind loads of long span roofs. Adv. Struct. Eng. 15(7), 1099–1114 (2012).  https://doi.org/10.1260/1369-4332.15.7.1099CrossRefGoogle Scholar
  3. 3.
    Tomás, A., Martí, P.: Shape and size optimization of concrete shells. Eng. Struct. 32(6), 1650–1658 (2010).  https://doi.org/10.1016/j.engstruct.2010.02.013CrossRefGoogle Scholar
  4. 4.
    Harutyunyan, N.K.H.: Some questions of creep theory. Gostekhizdat, p. 323 (1952). (in Russian)Google Scholar
  5. 5.
    Gvozdev, A.A., et al.: Strength, structural changes and deformation of concrete. Stroyizdat, p. 229 (1978). (in Russian)Google Scholar
  6. 6.
    Prokopovich, I.E., Zedgenidze, V.A.: Applied theory of creep. Stroyizdat, p. 240 (1980). (in Russian)Google Scholar
  7. 7.
    Ulitsky, I.I.: Creep of concrete. Gostekhizdat of Ukraine, Kiev, 133 p. (1948). (in Russian)Google Scholar
  8. 8.
    Kharlab, V.D.: Towards a general linear theory of creep. Izvestiya VNIIG, Lvov, Kiev, vol. 68, pp. 217–240 (1961). (in Russian)Google Scholar
  9. 9.
    Khokhlov, A.V.: Constitutive relation for rheological processes with known loading history. Creep and long-term strength curves. Mech. Solids 43(2), 283–299 (2008).  https://doi.org/10.3103/s0025654408020155CrossRefGoogle Scholar
  10. 10.
    Betten, J.: Creep Mechanics. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  11. 11.
    Garrido, M., Correia, J.R., et al.: Creep of sandwich panels with longitudinal reinforcement ribs for civil engineering applications: experiments and composite creep modeling. J. Compos. Constr. 21(1), 04016074 (2017).  https://doi.org/10.1061/(ASCE)CC.1943-5614.0000735CrossRefGoogle Scholar
  12. 12.
    Zolochevsky, A., Galishin, A., et al.: Analysis of creep deformation and creep damage in thin-walled branched shells from materials with different behavior in tension and compression. Int. J. Solids Struct. 44, 5075–5100 (2007).  https://doi.org/10.1016/j.ijsolstr.2006.12.019CrossRefzbMATHGoogle Scholar
  13. 13.
    Hamed, E., Bradford, M.A., et al.: Nonlinear long-term behaviour of spherical shallow thin-walled concrete shells of revolution. Int. J. Solids Struct. 47(2), 204–215 (2010).  https://doi.org/10.1016/j.ijsolstr.2009.09.027CrossRefzbMATHGoogle Scholar
  14. 14.
    Kuznetsov, E.B., Leonov, S.S.: Technique for selecting the functions of the constitutive equations of creep and long-term strength with one scalar damage parameter. J. Appl. Mech. Tech. Phys. 57(2), 369–377 (2016).  https://doi.org/10.1134/S0021894416020218MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yankovskii, A.P.: Refined deformation model for metal-composite plates of regular layered structure in bending under conditions of steady-state creep. Mech. Compos. Mater. 52(6), 715–732 (2017).  https://doi.org/10.1007/s11029-017-9622-7CrossRefGoogle Scholar
  16. 16.
    Miyazaki, N., Hagihara, S.: Creep buckling of shell structures. Mech. Eng. Rev. 2(2), 14-00522 (2015).  https://doi.org/10.1299/mer.14-00522CrossRefGoogle Scholar
  17. 17.
    Kharlab, V.D.: Fundamental questions of the linear theory of creep (with reference to concrete). SPbGASU, p. 207 (2014). (in Russian)Google Scholar
  18. 18.
    Karpov, V., Semenov, A.: Computer modeling of the creep process in stiffened shells, vol. 982, p. 48–58 (2020).  https://doi.org/10.1007/978-3-030-19756-8_5Google Scholar
  19. 19.
    Karpov, V.V., Semenov, A.A.: Dimensionless models of deformation of stiffened shell structures. PNRPU Mech. Bull. 1–2, 37–49 (2018).  https://doi.org/10.15593/perm.mech/eng.2018.1.05CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Saint Petersburg State University of Architecture and Civil EngineeringSaint PetersburgRussia

Personalised recommendations