Boundary Layer of the Wall Temperature Field

  • Tatiana MusorinaEmail author
  • Olga Gamayunova
  • Mikhail Petrichenko
  • Elena Soloveva
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1116)


The paper proposes a method for determining the temperature of small and large dimensional areas of enclosing structures. The purpose of the article is to determine the thickness of the temperature boundary layer at non-stationary modes of heat transfer for areas of random dimension. These areas are filled with scalar heat-conducting medium. It is necessary to solve the tasks related to the calculation of heat transfer in walls for one-dimensional and multidimensional models. It is proved that the thermal resistance of a one-dimensional wall is not less than the thermal resistance of a multidimensional wall in both steady-state and unsteady temperature regimes. It is explained that the temperature fluctuations do not pass inside the body of the wall and are localized on the wall surface. The maximum increase in the temperature flow in the steady-state regime for a multidimensional wall is approximately 41% compared to a one-dimensional wall. The effect of inclusions (thermal bridges) is related to the disseminate of heat flow along a multidimensional wall. This is the meaning of geometric inclusion, that is, increasing the dimension of the area filled with a scalar medium. Geometric inclusions must be taken into account when calculating walls other than one-dimensional walls.


Energy efficiency Thermal resistance Enclosing structure Heat transfer Geometric inclusions 


  1. 1.
    De Gracia, A., Castell, A., Fernández, C., Cabeza, L.F.: Energy Build. 93, 137 (2015). Scholar
  2. 2.
    Korniyenko, S.V.: Constr. Unique Build. Struct. 17 (2016)Google Scholar
  3. 3.
    Petrochenko, M.V., Petrichenko, M.R.: St. Petersbg. State Polytech. Univ. J. 147, 276 (2012)Google Scholar
  4. 4.
    Zaborova, D.D., Musorina, T.A., Petritchenko, M.R.: STS SPBSPU. Nat. Eng. Sci. 23, 18 (2016). Scholar
  5. 5.
    Vasilyev, G.P., Lichman, V.A., Yurchenko, I.A., Kolesova, M.V.: Mag. Civ. Eng. 66, 60 (2016). Scholar
  6. 6.
    Berardi, U., Tronchin, L., Manfren, M., Nastasi, B.: Energies 11 (2018). Scholar
  7. 7.
    Mingotti, N., Chenvidyakarn, T., Woods, A.W.: Energy Build. 58, 237 (2013). Scholar
  8. 8.
    Baiburin, A.K., Rybakov, M.M., Vatin, N.I.: Mag. Civ. Eng. 85, 3 (2019). Scholar
  9. 9.
    Korniyenko, S.V.: Appl. Mech. Mater. 618, 509 (2014). Scholar
  10. 10.
    Kornienko, S.V.: Vestn. MGSU 132 (2016).
  11. 11.
    Tusnina, O.A., Emelianov, A.A., Tusnina, V.M.: Mag. Civ. Eng. 43 (2013)Google Scholar
  12. 12.
    Gagarin, V., Akhmetov, V., Zubarev, K.: MATEC Web Conference (2018). Scholar
  13. 13.
    Gagarin, V.G., Kozlov, V.V., Neklyudov, A.Yu.: BCE Bull. Constr. Equip. 2, 978 (2016)Google Scholar
  14. 14.
    Minea, A.A.: Int. J. Heat Mass Transf. 68, 78 (2014)CrossRefGoogle Scholar
  15. 15.
    Hatvani-Kovacs, G., Belusko, M., Pockett, J., Boland, J.: Energy Build. 158, 290 (2018)CrossRefGoogle Scholar
  16. 16.
    Yaïci, W., Entchev, E.: Int. J. Heat Mass Transf. 144 (2019). Scholar
  17. 17.
    Gagliano, A., Patania, F., Nocera, F., Signorello, C.: Energy Build. 72, 361 (2014). Scholar
  18. 18.
    Reilly, A., Kinnane, O.: Appl. Energy 198, 108 (2017). Scholar
  19. 19.
    Johra, H., Heiselberg, P.: Renew. Sustain. Energy Rev. 69, 19 (2017). Scholar
  20. 20.
    Asdrubali, F., D’Alessandro, F., Schiavoni, S.: Sustain. Mater. Technol. 4, 1 (2015). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.State University of Technologies and Management named after K.G. Razumovsky (Bashkir Branch)MeleuzRussia

Personalised recommendations