Advertisement

Method of Evaluation of Historical Objects of Transport Infrastructure Deformations

  • Olga TsarevaEmail author
  • Yanis Olekhnovich
  • Elena Razumnova
Conference paper
  • 46 Downloads
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1116)

Abstract

The article presents a new method for assessing the deformations of historical objects of transport infrastructure, which is based on the construction of a model in the form of a polygonal mesh of 3D triangles between deformation marks, in which the main types of deformation by distances and their changes between deformation marks are determined. The article presents new formulas for calculating the main types of deformation, such as deflection and differential settlement through distances and their variations. The comparison graphs of the derived formulas and the classical deformation definition formulas are constructed. Comparison of the limiting values of deformations described in Russian and German standards was performed. We determine a critical change in the distance at which deformation reaches the limit value established by regulatory documents. The developed methodology can be used to control the preservation of historical objects of transport infrastructure.

Keywords

Buildings Deformation Differential settlements Deflection 

References

  1. 1.
    Xiaoa, W., et al.: Geoinformatics for the conservation and promotion of cultural heritage in support of the UN sustainable development goals. ISPRS J. Photogramm. Remote Sens. 142, 389–406 (2018)CrossRefGoogle Scholar
  2. 2.
    Murphy, M., McGovern, E., Pavia, S.: Historic building information modeling (HBIM). Struct. Surv. 27(4), 311–327 (2009)CrossRefGoogle Scholar
  3. 3.
    Khodeir, L.M., Aly, D., Tarek, S.: Integrating HBIM (heritage building information modeling) tools in the application of sustainable retrofitting of heritage buildings in Egypt. Procedia Environ. Sci. 34, 258–270 (2016)CrossRefGoogle Scholar
  4. 4.
    Murphy, M., Mcgovern, E., Pavia, S.: Historic building information modelling – adding intelligence to laser and image based surveys of european classical architecture. ISPRS J. Photogramm. Remote Sens. Ireland 76, 89–102 (2013)CrossRefGoogle Scholar
  5. 5.
    Dore, C., Murphy, M.: Integration of historic building information modeling and 3D GIS for recording and managing cultural heritage sites. In: 18th International Conference on Virtual Systems and Multimedia: “Virtual Systems in the Information Society”, Milan, Italy, pp. 369–376 (2012)Google Scholar
  6. 6.
    Cardinale, T., et al.: Evaluation of the efficacy of traditional recovery interventions in historical buildings. A new selection methodology. Energy Procedia 40, 515–524 (2013)CrossRefGoogle Scholar
  7. 7.
    Margottini, C., et al.: Advances in geotechnical investigations and monitoring in rupestrian settlements inscribed in the UNESCO’s world heritage list. Procedia Earth Planet. Sci. 16, 35–51 (2016)CrossRefGoogle Scholar
  8. 8.
    Johnson, R.A., Solis, A.: Using photogrammetry to interpret human action on Neolithic monument boulders in Ireland’s Cavan Burren. J. Archaeol. Sci.: Rep. 8, 90–101 (2016)Google Scholar
  9. 9.
    Chen, F., Lasaponara, R., Masini, N.: An overview of satellite synthetic aperture radar remote sensing in archaeology: From site detection to monitoring. J. Cultural Heritage 23, 5–11 (2017)CrossRefGoogle Scholar
  10. 10.
    Kuznetsova, I., Kuznetsova, D., Rakova, X.: The use of surface laser scanning for creation of a three-dimensional digital model of monument. Procedia Eng. 100, 1625–1633 (2015)CrossRefGoogle Scholar
  11. 11.
    Benavides López, J.A., et al.: 3D modelling in archaeology: the application of structure from motion methods to the study of the megalithic necropolis of Panoria (Granada, Spain). J. Archaeol. Sci.: Rep. 10, 495–506 (2016)Google Scholar
  12. 12.
    De Reu, J.: Towards a three-dimensional cost-effective registration of the archaeological heritage. J. Archaeol. Sci. 40(2), 1108–1121 (2013)CrossRefGoogle Scholar
  13. 13.
    Bryn, M.J., Afonin, D.A., Bogomolova, N.N.: Geodetic monitoring of deformation of building surrounding an underground construction. Procedia Eng. 189, 386–392 (2017)CrossRefGoogle Scholar
  14. 14.
    Mustafin, M.G., Valkov, V.A., Kazantsev, A.I.: Monitoring of deformation processes in buildings and structures in metropolises. Procedia Eng. 189, 729–736 (2017)CrossRefGoogle Scholar
  15. 15.
    Tkachev, Y.A.: Polevaya takheometriya. Vestnik instituta geologii Komi nauchnogo tsentra Ural’skogo otdeleniya RAN 9, 9–11 (2009)Google Scholar
  16. 16.
    Pozdysheva, O.N.: Analiz sovremennykh sredstv i metodov elektronnoy takheometrii. Arkhivarius 10(2), 86–89 (2016)Google Scholar
  17. 17.
    Anisimov, A.Y., et al.: Geodezicheskoye i geoinformatsionnoye soprovozhdeniye istoricheskikh issledovaniy na arkheologicheskom pamyatnike xvii–xviii veka «anan’ino». Sostoyaniye i perspektivy zemleustroitel’nogo, kadastrovogo, geodezicheskogo obespecheniya upravleniya zemel’nymi resursami i ob”yektami nedvizhimosti Sbornik nauchnykh trudov. FGBOU VPO OmGAU im. P.A. Stolypina, Omsk, pp. 5–9 (2015)Google Scholar
  18. 18.
    Zhikharev, S.A., Skvortsov, A.V.: Modelirovaniye relyefa v sisteme grafIn. Geoinformatika: Teoriya i praktika 1, Izd-vo Tom. Un-ta, Tomsk, pp. 193–204 (1998)Google Scholar
  19. 19.
    Fischer, D.: Zulässige Setzungsdifferenzen sowie Beanspruchung von Bauwerk und Gründung. Schriftenreihe Geotechnik Universität Kassel (2009). ISBN 978-3-89958-834-7Google Scholar
  20. 20.
    Nikolayev, S.A.: Statisticheskiye issledovaniya osadok inzhenernykh sooruzheniy. Nedra (1983)Google Scholar
  21. 21.
    Frolov, S.V., Tsareva, O.S., Dmitriev, I.I.: Novye formuly vychisleniya deformatsii pamyatnikov kul’turnogo naslediya. In: Politekhnicheskaya nedelya v Sankt-Peterburge : materialy nauchnogo foruma s mezhdunarodnym uchastiem. Kafedra vodokhozyaistvennogo i gidrotekhnicheskogo stroitel’stva, Izd-vo Politekhn. un-ta, SPb, pp. 149–151 (2016)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia
  2. 2.Saint Petersburg State University of Architecture and Civil EngineeringSt. PetersburgRussia

Personalised recommendations