Dedekind and Hardy Type Sums and Trigonometric Sums Induced by Quadrature Formulas

  • Gradimir V. Milovanović
  • Yilmaz Simsek


The Dedekind and Hardy sums and several their generalizations, as well as the trigonometric sums obtained from the quadrature formulas with the highest (algebraic or trigonometric) degree of exactness are studied. Beside some typical trigonometric sums mentioned in the introductory section, the Lambert and Eisenstein series are introduced and some remarks and observations for Eisenstein series are given. Special attention is dedicated to Dedekind and Hardy sums, as well as to Dedekind type Daehee-Changhee (DC) sums and their trigonometric representations and connections with some special functions. Also, the reciprocity law of the previous mentioned sums is studied. Finally, the trigonometric sums obtained from Gauss-Chebyshev quadrature formulas, as well as ones obtained from the so-called trigonometric quadrature rules, are considered.


Trigonometric sums Dedekind sums Hardy sums Eisenstein series Gauss-Chebyshev quadrature sums Degree of exactness 



The authors have been supported by the Serbian Academy of Sciences and Arts, Φ-96 (G. V. Milovanović) and by the Scientific Research Project Administration of Akdeniz University (Y. Simsek).


  1. 1.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 (Dover, New York, 1965)Google Scholar
  2. 2.
    T.M. Apostol, Generalized dedekind sums and transformation formulae of certain Lambert series. Duke Math. J. 17, 147–157 (1950)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    T.M. Apostol, On the Lerch zeta function. Pac. J. Math. 1, 161–167 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    T.M. Apostol, Theorems on generalized Dedekind sums. Pac. J. Math. 2, 1–9 (1952)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory (Springer, New York, 1976)zbMATHCrossRefGoogle Scholar
  6. 6.
    A. Bayad, Sommes de Dedekind elliptiques et formes de Jacobi. Ann. Instit. Fourier 51(1), 29–42 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    A. Bayad, Y. Simsek, Dedekind sums involving Jacobi modular forms and special values of Barnes zeta functions. Ann. Inst. Fourier, Grenoble 61(5), 1977–1993 (2011)Google Scholar
  8. 8.
    M. Beck, Dedekind cotangent sums. Acta Arithmetica 109(2), 109–130 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    B.C. Berndt, On the Hurwitz zeta-function. Rocky Mt. J. Math. 2(1), 151–157 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    B.C. Berndt, Generalized Dedekind eta-Functions and generalized Dedekind sums. Trans. Am. Math. Soc. 178, 495–508 (1973)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    B.C. Berndt, Dedekind sums and a paper of G. H. Hardy. J. Lond. Math. Soc. (2). 13(1), 129–137 (1976)Google Scholar
  12. 12.
    B.C. Berndt, Reciprocity theorems for Dedekind sums and generalizations. Adv. Math. 23(3), 285–316 (1977)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    B.C. Berndt, Analytic Eisenstein series, theta-functions and series relations in the spirit of Ramanujan. J. Reine Angew. Math. 303/304, 332–365 (1978)Google Scholar
  14. 14.
    B.C. Berndt, L.A. Goldberg, Analytic properties of arithmetic sums arising in the theory of the classical theta-functions. SIAM J. Math. Anal. 15, 143–150 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    B.C. Berndt, B.P. Yeap, Explicit evaluations and reciprocity theorems for finite trigonometric sums. Adv. Appl. Math. 29(3), 358–385 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    L. Carlitz, Some theorems on generalized Dedekind sums. Pac. J. Math. 3, 513–522 (1953)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    H. Chen, On some trigonometric power sums. Int. J. Math. Math. Sci. 30(3), 185–191 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    T.S. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach, New York, 1978)zbMATHGoogle Scholar
  19. 19.
    J. Choi, Some Identities involving the Legendre’s chi-function. Commun. Korean Math. Soc. 22(2), 219–225 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    J. Choi, D.S. Jang, H.M. Srivastava, A generalization of the Hurwitz-Lerch zeta function. Integral Transform. Spec. Funct. 19(1–2), 65–79 (2008)MathSciNetzbMATHGoogle Scholar
  21. 21.
    W. Chu, Reciprocal relations for trigonometric sums. Rocky Mt. J. Math. 48(1), 121–140 (2018)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    D. Cvijović, Integral representations of the Legendre chi function. J. Math. Anal. Appl. 332, 1056–1062 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    D. Cvijović, Summation formulae for finite cotangent sums. Appl. Math. Comput. 215, 1135–1140 (2009)MathSciNetzbMATHGoogle Scholar
  24. 24.
    D. Cvijović, Summation formulae for finite tangent and secant sums. Appl. Math. Comput. 218, 741–745 (2011)MathSciNetzbMATHGoogle Scholar
  25. 25.
    D. Cvijović, J. Klinkovski, Values of the Legendre chi and Hurwitz zeta functions at rational arguments. Math. Comp. 68, 1623–1630 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    D. Cvijović, J. Klinkovski, Finite cotangent sums and the Riemann zeta function. Math. Slovaca 50(2), 149–157 (2000)MathSciNetzbMATHGoogle Scholar
  27. 27.
    D. Cvijović, H.S. Srivastava, Summation of a family of finite secant sums. Appl. Math. Copmput. 190, 590–598 (2007)MathSciNetzbMATHGoogle Scholar
  28. 28.
    D. Cvijović, H.S. Srivastava, Closed-form summations of Dowker’s and related trigonometric sums. J. Phys. A 45(37), 374015 (2012)Google Scholar
  29. 29.
    U. Dieter, Cotangent sums, a further generalization of Dedekind sums. J. Number Theory 18, 289–305 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    J.S. Dowker, On Verlinde’s formula for the dimensions of vector bundles on moduli spaces. J. Phys. A 25(9), 2641–2648 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    C M. da Fonseca, V. Kowalenko, On a finite sum with powers of cosines. Appl. Anal. Discrete Math. 7, 354–377 (2013)Google Scholar
  32. 32.
    C.M. da Fonseca, M.L. Glasser, V. Kowalenko, Basic trigonometric power sums with applications. Ramanujan J. 42(2), 401–428 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    C.M. da Fonseca, M.L. Glasser, V. Kowalenko, Generalized cosecant numbers and trigonometric inverse power sums. Appl. Anal. Discrete Math. 42(2), 70–109 (2018)MathSciNetGoogle Scholar
  34. 34.
    W. Gautschi, On the remainder term for analytic functions of Gauss-Lobatto and Gauss-Radau quadratures. Rocky Mt. J. Math. 21, 209–226 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    W. Gautschi, Orthogonal Polynomials: Computation and Approximation (Clarendon Press, Oxford, 2004)zbMATHGoogle Scholar
  36. 36.
    W. Gautschi, S. Li, The remainder term for analytic functions of Gauss-Radau and Gauss-Lobatto quadrature rules with multiple end points. J. Comput. Appl. Math. 33, 315–329 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    W. Gautschi, S. Li, Gauss-Radau and Gauss-Lobatto quadratures with double end points. J. Comput. Appl. Math. 34, 343–360 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    W. Gautschi, G.V. Milovanović, s-orthogonality and construction of Gauss-Turán-type quadrature formulae. J. Comput. Appl. Math. 86, 205–218 (1997)Google Scholar
  39. 39.
    A. Ghizzetti, A. Ossicini, Quadrature Formulae (Akademie Verlag, Berlin, 1970)zbMATHCrossRefGoogle Scholar
  40. 40.
    L.A. Goldberg, Transformation of Theta-Functions and Analogues of Dedekind Sums, Thesis, University of Illinois Urbana (1981)Google Scholar
  41. 41.
    P.J. Grabner, H. Prodinger, Secant and cosecant sums and Bernoulli-Nörlund polynomials. Quaest. Math. 30, 159–165 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  42. 42.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, 7th edn. (Elsevier/Academic Press, Amsterdam, 2007)zbMATHGoogle Scholar
  43. 43.
    E. Grosswald, Dedekind-Rademacher sums. Am. Math. Mon. 78, 639–644 (1971)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    E. Grosswald, Dedekind-Rademacher sums and their reciprocity formula. J. Reine. Angew. Math. 25(1), 161–173 (1971)MathSciNetzbMATHGoogle Scholar
  45. 45.
    J. Guillera, J. Sondow, Double integrals and infinite products for some classical constants via analytic continuations of Lerch’s transcendent. Ramanujan J. 16(3), 247–270 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    R.R. Hall, J.C. Wilson, D. Zagier, Reciprocity formulae for general Dedekind-Rademacher sums. Acta Arith. 73(4), 389–396 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    E.R. Hansen, A Table of Series and Products (Prentice-Hall, Englewood Cliffs, 1975)zbMATHGoogle Scholar
  48. 48.
    G.H. Hardy, On certain series of discontinous functions connected with the modular functions. Quart. J. Math. 36, 93–123 (1905); [Collected Papers, vol. IV (Clarendon Press, Oxford, 1969), pp. 362–392]Google Scholar
  49. 49.
    M.E. Hoffman, Derivative polynomials and associated integer sequences. Electron. J. Combin. 6, 13 (1999), Research Paper 21Google Scholar
  50. 50.
    T. Kim, Note on the Euler numbers and polynomials. Adv. Stud. Contemp. Math. 17, 131–136 (2008)MathSciNetzbMATHGoogle Scholar
  51. 51.
    T. Kim, Euler numbers and polynomials associated with zeta functions. Abstr. Appl. Anal. 2008, 11 (2008), Art. ID 581582Google Scholar
  52. 52.
    T. Kim, Note on Dedekind type DC sums. Adv. Stud. Contemp. Math. (Kyungshang) 18(2), 249–260 (2009)Google Scholar
  53. 53.
    M.I. Knoop, Modular Functions in Analytic Number Theory (Markham Publishing Company, Chicago, 1970)Google Scholar
  54. 54.
    N. Koblitz, Introduction to Elliptic Curves and Modular Forms (Springer, New York, 1993)zbMATHCrossRefGoogle Scholar
  55. 55.
    J. Lewittes, Analytic continuation of the series \(\sum \left ( m+nz\right ) ^{-s}\). Trans. Am. Math. Soc. 159, 505–509 (1971)Google Scholar
  56. 56.
    J. Lewittes, Analytic continuation of Eisenstein series. Trans. Am. Math. Soc. 177, 469–490 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    A. Markov, Sur la méthode de Gauss pour le calcul approché des intégrales. Math. Ann. 25, 427–432 (1885)MathSciNetCrossRefGoogle Scholar
  58. 58.
    G. Mastroianni, G.V. Milovanović, Interpolation Processes – Basic Theory and Applications. Springer Monographs in Mathematics (Springer, Berlin/Heidelberg/New York, 2008)Google Scholar
  59. 59.
    G.V. Milovanović, Construction of s-orthogonal polynomials and Turán quadrature formulae, in Numerical Methods and Approximation Theory III, ed. by G.V. Milovanović (Niš, 1987) (Univ. Niš, Niš, 1988), pp. 311–328Google Scholar
  60. 60.
    G.V. Milovanović, Quadrature with multiple nodes, power orthogonality, and moment-preserving spline approximation. J. Comput. Appl. Math. 127, 267–286 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    G.V. Milovanović, D. Joksimović, On a connection between some trigonometric quadrature rules and Gauss-Radau formulas with respect to the Chebyshev weight. Bull. Cl. Sci. Math. Nat. Sci. Math. 39, 79–88 (2014)MathSciNetzbMATHGoogle Scholar
  62. 62.
    G.V. Milovanović, A.S. Cvetković, M.P. Stanić, Trigonometric orthogonal systems and quadrature formulae. Comput. Math. Appl. 56, 2915–2931 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    G.V. Milovanović, D.S. Mitrinović, T.M. Rassias, Topics in Polynomials: Extremal Problems, Inequalities, Zeros (World Scientific Publishing Co., Inc., River Edge, 1994)zbMATHCrossRefGoogle Scholar
  64. 64.
    G.V. Milovanović, M.S. Pranić, M.M. Spalević, Quadrature with multiple nodes, power orthogonality, and moment-preserving spline approximation, Part II. Appl. Anal. Discrete Math. 13, 1–27 (2019)MathSciNetCrossRefGoogle Scholar
  65. 65.
    G.V. Milovanović, T.M. Rassias (eds.), Analytic Number Theory, Approximation Theory, and Special Functions. In Honor of Hari M. Srivastava (Springer, New York, 2014)Google Scholar
  66. 66.
    G.V. Milovanović, T.M. Rassias, Inequalities connected with trigonometric sums, in Constantin Carathéodory: an International Tribute, vol. II (World Science Publications, Teaneck, 1991), pp. 875–941zbMATHCrossRefGoogle Scholar
  67. 67.
    G.V. Milovanović, M.M. Spalević, M.S. Pranić, On the remainder term of Gauss-Radau quadratures for analytic functions. J. Comput. Appl. Math. 218, 281–289 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  68. 68.
    G.V. Milovanović, M.P. Stanić, Quadrature rules with multiple nodes, in Mathematical Analysis, Approximation Theory and Their Applications, ed. by T.M. Rassias, V. Gupta (Springer, Cham, 2016), pp. 435–462CrossRefGoogle Scholar
  69. 69.
    S.E. Notaris, The error norm of Gauss-Radau quadrature formulae for Chebyshev weight functions. BIT Numer. Math. 50, 123–147 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  70. 70.
    A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, vol. 1. Elementary functions (Gordon and Breach Science Publishers, New York, 1986)Google Scholar
  71. 71.
    A.P. Prudnikov, Y.A. Brychkov, O.I. Marichev, Integrals and Series, vol. 2 (Gordon and Breach, New York, 1986)zbMATHGoogle Scholar
  72. 72.
    H. Rademacher, Zur Theorie der Modulfunktionen. J. Reine Angew. Math. 167, 312–336 (1932)MathSciNetzbMATHGoogle Scholar
  73. 73.
    H. Rademacher, Über eine Reziprozitätsformel aus der Theorie der Modulfunktionen. Mat. Fiz. Lapok 40, 24–34 (1933) (Hungarian)Google Scholar
  74. 74.
    H. Rademacher, Die reziprozitatsformel für Dedekindsche Summen. Acta Sci. Math. (Szeged) 12(B), 57–60 (1950)Google Scholar
  75. 75.
    H. Rademacher, Topics in Analytic Number Theory, Die Grundlehren der Math. Wissenschaften, Band 169 (Springer, Berlin, 1973)Google Scholar
  76. 76.
    H. Rademacher, E. Grosswald, Dedekind Sums, The Carus Mathematical Monographs, vol. 16 (The Mathematical Association of America, Washington, DC, 1972)zbMATHCrossRefGoogle Scholar
  77. 77.
    M.T. Rassias, L. Toth, Trigonometric representations of generalized Dedekind and Hardy sums via the discrete Fourier transform, in Analytic Number Theory: In Honor of Helmut Maier’s 60th Birthday, ed. by C. Pomerance, M.T. Rassias (Springer, Cham, 2015), pp. 329–343CrossRefGoogle Scholar
  78. 78.
    T. Schira, The remainder term for analytic functions of Gauss-Lobatto quadratures. J. Comput. Appl. Math. 76, 171–193 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  79. 79.
    Y.G. Shi, On Turán quadrature formulas for the Chebyshev weight. J. Approx. Theory 96, 101–110 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  80. 80.
    Y.G. Shi, On Gaussian quadrature formulas for the Chebyshev weight. J. Approx. Theory 98, 183–195 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  81. 81.
    Y.G. Shi, Generalized Gaussian quadrature formulas with Chebyshev nodes. J. Comput. Math. 17(2), 171–178 (1999)MathSciNetzbMATHGoogle Scholar
  82. 82.
    B. Schoeneberg, Elliptic Modular Functions: An Introduction, Die Grundlehren der mathematischen Wissenschaften, Band 203 (Springer, New York/Heidelberg, 1974)CrossRefGoogle Scholar
  83. 83.
    R. Sczech, Dedekind summen mit elliptischen Funktionen. Invent. Math. 76, 523–551 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  84. 84.
    Y. Simsek, Relations between theta-functions Hardy sums Eisenstein and Lambert series in the transformation formula of \(\log \eta _{g,h}(z)\). J. Number Theory 99, 338–360 (2003)Google Scholar
  85. 85.
    Y. Simsek, Generalized Dedekind sums associated with the Abel sum and the Eisenstein and Lambert series. Adv. Stud. Contemp. Math. (Kyungshang) 9(2), 125–137 (2004)Google Scholar
  86. 86.
    Y. Simsek, On generalized Hardy sums S 5(h, k). Ukrainian Math. J. 56(10), 1434–1440 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  87. 87.
    Y. Simsek, q-Dedekind type sums related to q-zeta function and basic L-series. J. Math. Anal. Appl. 318(1), 333–351 (2006)Google Scholar
  88. 88.
    Y. Simsek, On analytic properties and character analogs of Hardy sums. Taiwanese J. Math. 13(1), 253–268 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  89. 89.
    Y. Simsek, Special functions related to Dedekind-type DC-sums and their applications. Russ. J. Math. Phys. 17(4), 495–508 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  90. 90.
    Y. Simsek, D. Kim, J.K. Koo, Oon elliptic analogue to the Hardy sums. Bull. Korean Math. Soc. 46(1), 1–10 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  91. 91.
    R. Sitaramachandrarao, Dedekind and Hardy sums. Acta Arith. 48, 325–340 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  92. 92.
    H.M. Srivastava, A note on the closed-form summation of some trigonometric series. Kobe J. Math. 16(2), 177–182 (1999)MathSciNetzbMATHGoogle Scholar
  93. 93.
    H.M. Srivastava, A. Pinter, Remarks on some relationships between the Bernoulli and Euler polynomials. Appl. Math. Lett. 17(4), 375–380 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  94. 94.
    H.M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions (Kluwer Academic Publishers, Dordrecht/Boston/London, 2001)zbMATHCrossRefGoogle Scholar
  95. 95.
    T.J. Stijeltes, Note sur quelques formules pour l’évaluation de certaines intégrales, Bul. Astr. Paris 1, 568–569 (1884) [Oeuvres I, 426–427]Google Scholar
  96. 96.
    S.K. Suslov, Some Expansions in basic Fourier series and related topics. J. Approx. Theory 115(2), 289–353 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  97. 97.
    P. Turán, On the theory of the mechanical quadrature. Acta Sci. Math. Szeged 12, 30–37 (1950)MathSciNetzbMATHGoogle Scholar
  98. 98.
    A.H. Turetzkii, On quadrature formulae that are exact for trigonometric polynomials. East J. Approx. 11(3), 337–335 (2005). [Translation in English from Uchenye Zapiski, Vypusk 1 (149). Seria Math. Theory of Functions, Collection of papers, Izdatel’stvo Belgosuniversiteta imeni V.I. Lenina, Minsk (1959), pp. 31–54]Google Scholar
  99. 99.
    E.T. Wittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 1962)Google Scholar
  100. 100.
    M. Waldschmidt, P. Moussa, J.M. Luck, C. Itzykson, From Number Theory to Physics (Springer, New York, 1995)zbMATHGoogle Scholar
  101. 101.
    D. Zagier, Higher dimensional Dedekind sums. Math. Ann. 202, 149–172 (1973)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Gradimir V. Milovanović
    • 1
    • 2
  • Yilmaz Simsek
    • 3
  1. 1.The Serbian Academy of Sciences and ArtsBelgradeSerbia
  2. 2.Faculty of Sciences and MathematicsUniversity of NišNišSerbia
  3. 3.Faculty of Arts and Science, Department of MathematicsAkdeniz UniversityAntalyaTurkey

Personalised recommendations